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Roadmap

• Lecture 1 - Functorial semantics 1 - algebraic theories 

• Lecture 2 - Functorial semantics 2 - partial, relational and first-order theories


• Lecture 3 - Graphical linear algebra and applications



Compositional modelling
What is compositionality?

• Modularity - a system described as a composition of its parts


• Compositionality - a combination of:


• a language (syntax) for composing systems


• with operations that are compatible with the intended meaning (semantics)


• such that the translation syntax ⇒ semantics is homomorphic

Goal: no “emergent” behaviour



Modelling status quo

• models are global, monolithic and closed systems


• dynamics is obtained “a la physics” - analysing combinatorics of local interactions to obtain global behaviour via a set 
of differential equaitons


• not modular: often constructed fresh for each application


• interaction with environment is usually oversimplified or abstracted away


• analysis in functional terms, inputs driving outputs


• but we have more data than ever before – we need good models



A problem with traditional modelling
The real world is not functional!

Although input/output thinking is useful in certain 
situations, …  as a general methodology, input/output 

descriptions are ill-founded and clash with system 
interconnection. Interconnection, as we shall see, results 
in variable sharing, not in output- to-input assignment.


Jan C Willems, The Behavioral Approach to Open and Interconnected 
Systems, IEEE Control Systems Magazine, 2007
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proved equivalent, are c2 and c1 from Example 1 (modulo the
notation adopted for -1 since Section 3).

A similar procedure can be used to check the observational
equivalence of directed signal flow graphs. For instance, take:
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First, we forget the direction of the flow and we obtain the circuits
c3 and c4 depicted below, on the left and on the right.
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Then, by virtue of Proposition 4 and full abstraction, we can safely
use IH

= to check hc3i = hc4i. Observe that c3 is like in Example 1
and c4 is just the sequential composition c2 ; c2. We can thus reuse
(14) to see that

c4 = c2 ; c2
IH

= 1�x ; 1�x
IH

= (1�x)2

To conclude, we only have to check that c3 is equal in IH to the
righmost circuit above. This is shown as follows, along the same
lines of derivation (14):
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The circuits in (15) can also be thought of as two different
implementations of (1�x)2 . Indeed, 1

(1�x)2
is the generating

function of the sequence 1, 2, 3, 4, . . . .

7. Conclusions

The network theoretic approach combines algebra and topology–
the circuits of the theory that we presented have an algebraic na-
ture, as demonstrated by the axiomatisations, as well as a topo-
logical nature, when viewed as string diagrams. Our contribution
adds an operational understanding to the previously discovered de-
notational insights. Throughout the paper we have tried to illustrate
the fruitful interplay between algebra, topology, the operational and
denotational approaches.

Although our attention in this work was restricted to signal flow
graphs, the same methodology could be beneficial in other areas
where diagrammatic notation is employed: in addition to the ex-
amples we mentioned in the introduction there are Kahn process
networks, Bayesian networks and automata, amongst many others.
Typically, such diagrammatic formalisms are translated to more
traditional mathematics, but seldom reasoned about directly. The
broad picture of the work in this paper is a deep connection between
a denotational view and a fully-fledged operational approach that is
intimately related to the hallmark of network theory: the interplay
between algebra and topology. Our vision is close to that advocated
by Abramsky for concurrency theory [1]: we believe that this ap-
proach will eventually lead to less a specialised, fragmented and
sometimes overly syntax-focussed landscape.
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In such systems composition is often relational. There are many examples.



Towards a solution
New relational algebras?

• traditional syntax has functionality built in


• all operations are functional


• the main operation of term-building (substitution) is just fancy function composition


• 20th century extensions (essentially algebraic theories, first order theories) suffer from some of the same defects of 
term-building fundamentals


• some important insights have been obtained from the study of relational algebras: Peirce, Kleene, Tarski, Freyd and 
Scedrov, …


• Lawvere’s insight: “functionality” is deeply associated with cartesian structure (i.e. categorical products)


• traditional syntax is thus built to operate on “classical data”: one that can be copied and discarded 


• This, and other algebraic structure, can often be studied as additional structure on a symmetric monoidal category 

• The plan for today and tomorrow: Set, Par, Rel as symmetric monoidal categories with structure 



Traditional syntax
Theory of commutative monoids
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:4 Anon.

Fox’s theorem is to cartesian categories. In S4 we propose our original de�nitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.

2 BACKGROUNDMATERIAL
2.1 Overview of classical universal algebra
Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and de�nitions.

De�nition 2.1. An signature is a pair (�,�) where � is a set and � a function � ! N that assigns
to every element t : � a natural number �(n) : N called the arity of the function symbol t .

Notation 2.2. The arity “slices” the set � of function symbols. The slice �n ✓ � contains operations
of arity n, and t : �n is a synonym for “t is a n-ary operation”. We will sometimes write tn for a
generic element of �n . We shall refer to the signature as just � if the arity function is understood
from the context. For example the signature �M of monoids is {m, e}, with �(m) = 2 and �(e) = 0.
De�nition 2.3. An �-algebra is a pair (A, J�KA) where A is a set and J�KA is
a function sending function symbols t : �n to functions JtKA : An ! A. The
function JtKA is called then-ary operation onA associated to the function symbol
t : �n . We refer toA as the carrier of the �-algebra. A �-algebra homomorphism
from (A, J�KA) to (B, J�KB ) is a function f : A ! B that respects the � structure:
i.e. for every n 2 N and tn : �n , the diagram on the right commutes:

An

JtnKA
✏✏

f n // Bn

JtnKB
✏✏

A
f
// B .

Remark 2.4. �-algebras and their homomorphisms de�ne a category V�.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we �rst need the notion of term. Fixing a signature �, we recall
the usual recursive construction of the set of terms TV

� , for some set of variables V :

T
V
� ::= V | t0 | t1(TV

� ) | t2(TV
� ,T

V
� ) | . . . | tn(TV

� , . . . ,T
V
� ) | . . .

In the above, each ti ranges over the function symbols in �i . For any V , TV
� carries a canonical

�-algebra structure: JtK(t1, t2, . . . , tnt )
def
= t(t1, t2, . . . , tnt ). We call this the term �-algebra over V .

Observation 2.5. The term �-algebraTV
� enjoys a universal property: given a �-algebra (A, J�KA)

and function � : V ! A, there is a unique extension to a homomorphism of algebras �̄ : TV
� ! A.

This is just the induction principle associated to the recursive de�nition of terms.

De�nition 2.6 (�-equation). Fixing V , a �-equation is a pair (s, t) 2 T
V
� ⇥T

V
� ; we usually write

‘s = t ’. A �-equation s = t holds in �-algebra (A, J�KA) if for all � : V ! A we have �̄(s) = �̄(t) in A.
Given the signature of monoids, we can express properties such as associativity:m(x ,m(�, z)) =

m(m(x ,�), z); or commutativity:m(x ,�) =m(�,x); etc. Then the algebras in which, say, the com-
mutative equation holds are precisely the commutative monoids. In general, the idea is that a set of
�-equations constrains the choice of algebras (A, J�KA) to those where every equation holds.

De�nition 2.7 (Equational Theory and Variety). A pair (�,E) where � is a signature and E a set of
�-equations is called an equational theory. A model of (�,E) is a �-algebra where every e : E holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is
( {m, e}, {m(m(x ,�), z) =m(x ,m(�, z)), m(x ,�) =m(�,x), m(e,x) = x } ).
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:4 Anon.

Fox’s theorem is to cartesian categories. In S4 we propose our original de�nitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.

2 BACKGROUNDMATERIAL
2.1 Overview of classical universal algebra
Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and de�nitions.

De�nition 2.1. An signature is a pair (�,�) where � is a set and � a function � ! N that assigns
to every element t : � a natural number �(n) : N called the arity of the function symbol t .

Notation 2.2. The arity “slices” the set � of function symbols. The slice �n ✓ � contains operations
of arity n, and t : �n is a synonym for “t is a n-ary operation”. We will sometimes write tn for a
generic element of �n . We shall refer to the signature as just � if the arity function is understood
from the context. For example the signature �M of monoids is {m, e}, with �(m) = 2 and �(e) = 0.
De�nition 2.3. An �-algebra is a pair (A, J�KA) where A is a set and J�KA is
a function sending function symbols t : �n to functions JtKA : An ! A. The
function JtKA is called then-ary operation onA associated to the function symbol
t : �n . We refer toA as the carrier of the �-algebra. A �-algebra homomorphism
from (A, J�KA) to (B, J�KB ) is a function f : A ! B that respects the � structure:
i.e. for every n 2 N and tn : �n , the diagram on the right commutes:

An

JtnKA
✏✏

f n // Bn

JtnKB
✏✏

A
f
// B .

Remark 2.4. �-algebras and their homomorphisms de�ne a category V�.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we �rst need the notion of term. Fixing a signature �, we recall
the usual recursive construction of the set of terms TV

� , for some set of variables V :

T
V
� ::= V | t0 | t1(TV

� ) | t2(TV
� ,T

V
� ) | . . . | tn(TV

� , . . . ,T
V
� ) | . . .

In the above, each ti ranges over the function symbols in �i . For any V , TV
� carries a canonical

�-algebra structure: JtK(t1, t2, . . . , tnt )
def
= t(t1, t2, . . . , tnt ). We call this the term �-algebra over V .

Observation 2.5. The term �-algebraTV
� enjoys a universal property: given a �-algebra (A, J�KA)

and function � : V ! A, there is a unique extension to a homomorphism of algebras �̄ : TV
� ! A.

This is just the induction principle associated to the recursive de�nition of terms.

De�nition 2.6 (�-equation). Fixing V , a �-equation is a pair (s, t) 2 T
V
� ⇥T

V
� ; we usually write

‘s = t ’. A �-equation s = t holds in �-algebra (A, J�KA) if for all � : V ! A we have �̄(s) = �̄(t) in A.
Given the signature of monoids, we can express properties such as associativity:m(x ,m(�, z)) =

m(m(x ,�), z); or commutativity:m(x ,�) =m(�,x); etc. Then the algebras in which, say, the com-
mutative equation holds are precisely the commutative monoids. In general, the idea is that a set of
�-equations constrains the choice of algebras (A, J�KA) to those where every equation holds.

De�nition 2.7 (Equational Theory and Variety). A pair (�,E) where � is a signature and E a set of
�-equations is called an equational theory. A model of (�,E) is a �-algebra where every e : E holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is
( {m, e}, {m(m(x ,�), z) =m(x ,m(�, z)), m(x ,�) =m(�,x), m(e,x) = x } ).
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pairs of terms over some set of variables

implicit universal quantification



Traditional syntax 
Universal algebra basics I
• A signature is a pair Σ = (S,α) where S is a set of operation symbols together with an arity function α : S → N 

• A Σ-algebra is a pair (A,[-]) where A is a set (semantic domain) and [-] is a function that sends operation symbols to 
functions [σ] : Aα(σ) → A


• A Σ-algebra homomorphism is the obvious thing: a map between semantic domains that’s homomorphic wrt 
operations:


• Given a set of variables V, the term Σ-algebra TV is 


• TV ::= V | t0 | t1(TV) | t2(TV,TV) | ... | tn(TV,...,TV) | ... 


• The term Σ-algebra satisfies a universal property, any v : V → A extends to a unique Σ-algebra homomorphism v* : TV → A 


• compositionality!
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Fox’s theorem is to cartesian categories. In S4 we propose our original de�nitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.

2 BACKGROUNDMATERIAL
2.1 Overview of classical universal algebra
Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and de�nitions.

De�nition 2.1. An signature is a pair (�,�) where � is a set and � a function � ! N that assigns
to every element t : � a natural number �(n) : N called the arity of the function symbol t .

Notation 2.2. The arity “slices” the set � of function symbols. The slice �n ✓ � contains operations
of arity n, and t : �n is a synonym for “t is a n-ary operation”. We will sometimes write tn for a
generic element of �n . We shall refer to the signature as just � if the arity function is understood
from the context. For example the signature �M of monoids is {m, e}, with �(m) = 2 and �(e) = 0.
De�nition 2.3. An �-algebra is a pair (A, J�KA) where A is a set and J�KA is
a function sending function symbols t : �n to functions JtKA : An ! A. The
function JtKA is called then-ary operation onA associated to the function symbol
t : �n . We refer toA as the carrier of the �-algebra. A �-algebra homomorphism
from (A, J�KA) to (B, J�KB ) is a function f : A ! B that respects the � structure:
i.e. for every n 2 N and tn : �n , the diagram on the right commutes:

An

JtnKA
✏✏

f n // Bn

JtnKB
✏✏

A
f
// B .

Remark 2.4. �-algebras and their homomorphisms de�ne a category V�.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we �rst need the notion of term. Fixing a signature �, we recall
the usual recursive construction of the set of terms TV

� , for some set of variables V :

T
V
� ::= V | t0 | t1(TV

� ) | t2(TV
� ,T

V
� ) | . . . | tn(TV

� , . . . ,T
V
� ) | . . .

In the above, each ti ranges over the function symbols in �i . For any V , TV
� carries a canonical

�-algebra structure: JtK(t1, t2, . . . , tnt )
def
= t(t1, t2, . . . , tnt ). We call this the term �-algebra over V .

Observation 2.5. The term �-algebraTV
� enjoys a universal property: given a �-algebra (A, J�KA)

and function � : V ! A, there is a unique extension to a homomorphism of algebras �̄ : TV
� ! A.

This is just the induction principle associated to the recursive de�nition of terms.

De�nition 2.6 (�-equation). Fixing V , a �-equation is a pair (s, t) 2 T
V
� ⇥T

V
� ; we usually write

‘s = t ’. A �-equation s = t holds in �-algebra (A, J�KA) if for all � : V ! A we have �̄(s) = �̄(t) in A.
Given the signature of monoids, we can express properties such as associativity:m(x ,m(�, z)) =

m(m(x ,�), z); or commutativity:m(x ,�) =m(�,x); etc. Then the algebras in which, say, the com-
mutative equation holds are precisely the commutative monoids. In general, the idea is that a set of
�-equations constrains the choice of algebras (A, J�KA) to those where every equation holds.

De�nition 2.7 (Equational Theory and Variety). A pair (�,E) where � is a signature and E a set of
�-equations is called an equational theory. A model of (�,E) is a �-algebra where every e : E holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is
( {m, e}, {m(m(x ,�), z) =m(x ,m(�, z)), m(x ,�) =m(�,x), m(e,x) = x } ).
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Traditional syntax
Universal algebra basics II
• An equation is a pair (s,t) ∈ TV × TV


• An algebraic theory is a pair (Σ, E) where Σ is a signature and E is a set of equations.


• Example: the theory of commutative monoids


• A model is a Σ-algebra where every equation e ∈ E holds (for any valuation v : V → A *)


• A model homomorphism is a Σ-algebra homomorphism


• The class of models of a theory is called a variety 

• Theorem (Birkhoff 1935) A class of Σ-algebras is a variety iff it is closed under homomorphic images, subalgebras and products.


• * Note: given that equations are required to hold under any evaluations, they are implicitly universally quantified 

• For more expressivity,


• essentially algebraic theories, quasi-varieties: operations are allowed to be partial, equations involve domains of definition 


• first order theories: syntax contains relation symbols and formulas are more involved 


• logical operations including negation, quantifiers



Symmetric monoidal categories 

• A monoidal category C is a category equipped with monoidal product ⊗ 


• ⊗ : C × C  → C 


• an object I ∈ C called the monoidal unit 


• together with coherent natural isomorphisms 


• αa,b,c : (a ⊗ b) ⊗ c  → a ⊗ (b ⊗ c)


• ρa : a ⊗ I → a


• λa : I ⊗ a → a


• A symmetric monoidal category additionally has a natural isomorphism σX,Y : X⊗Y → Y⊗X that satisfies σX,Y ; σY,X = idX,Y


• Relevant examples, in all cases the cartesian product of sets gives a symmetric monoidal structure 


• Set, Par, Rel 


• For any set X, there are strict versions, SetX, ParX, RelX. 


• In each case the objects are natural numbers, and arrows from m to n are arrows Xm → Xn in the relevant category 


• strict symmetric monoidal categories with objects natural numbers and ⊗ on objects acting as + are called props



String diagrams - a quick tutorial

• Instead of writing C : m → n, we draw 


• composition is plugging wires


• monoidal product is “stacking” boxes 

C
m n

C
k l

D
m

C
k l

m
D

n



Perks of the notation

• associativity is built in:


• functoriality of ⊗ is built in: 

k l mC D E n

C

D

E

m

m'

m''

n

n'

n''

A B

C D



Identities and symmetries

• Identity arrows are drawn as wires. The monoidal identity is not drawn.


• symmetries and “only connectivity matters”


• What are string diagrams exactly? Are they topological objects? Are they combinatorial objects? Are they syntactic objects?


• Yes
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Equpping symmetric monoidal categories with structure
Monoidal theories

• A monoidal signature Γ = (G, ar, coar) where G is a set of operations


• ar : G → N is gives arities


• coar : G → N gives coarities 
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Functorial Semantics for Partial Theories :5

The corresponding variety is the class of commutative monoids.

Some of the most famous results of universal algebra characterise varieties. For example:

Theorem 2.9 (Birkho� [Bir35]). A class of �-algebras is a variety if and only if it is closed under
homomorphic images, subalgebras and products.

2.2 Props and monoidal theories
Our development is informed by the di�erences between the algebraic structure of total functions
and partial functions. Given the focus on algebra, the notion of prop is useful as a categorical gadget
on which to hang an algebraic structure. Moreover, the associated notion of string diagram will
lead us to a syntax with which to express partial equational theories by appropriately generalising
classical terms. Here we recall the basic de�nitions of props, string diagrams and some of the
algebraic structures important in subsequent sections.

De�nition 2.10 (Prop [Mac65, Ch. 5]). A prop is a symmetric strict monoidal category with set of
objects the natural numbers N, where the monoidal product on objects is addition:m ⌦ n :=m + n.
A homomorphism of props is an identity-on-objects symmetric strict monoidal functor.

Example 2.11. An important example is the prop F of �nite sets and functions. In the following,
[m] def
= {1, 2, . . . ,m}. The F -arrowsm ! n are all functions [m] ! [n]: composition is function

composition, and the monoidal product is “disjoint union”; i.e. for f1 : m1 ! n1 and f2 : m2 ! n2,

(f1 ⌦ f2)(i) : m1 +m2 ! n1 + n2
def
=

(
f1(i) if i  m1

f2(i �m1) + n1 otherwise.

Free props generated from some signature of operations are of particular importance.

De�nition 2.12 (Monoidal signature). A monoidal signature � is a collection of generators � : �,
each with an arity ar (� ) : N and coarity coar (� ) : N.

Concrete terms can be given a BNF description, as follows:

c ::= � 2 � | | | | c ⌦ c | c # c (BNFT)

Arities and coarities are not handled in the BNF but with an associated sorting discipline, shown
below. We only consider terms that have a sort, which is unique if it exists.

� : (ar (� ), coar (� )) : (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c #d : (n,m)

c : (n,m) d : (r, z)

c⌦d : (n+r,m+z)

The idea is that the sort c : (m, n) counts the number of “dangling wires” of each term. Every
sortable term generated from (BNFT) has a diagrammatic representation. The convention for � : �
is to draw it as a box with ar (� ) “dangling wires” on the left and coar (� ) on the right:

ar (� )
n

�...
...

o
coar (� )

The conventions for the (BNFT) operations are: c # c 0 is drawn c c�...
...

... and c⌦c 0 is drawn c

c� ...

...
...

...

.

The sorting discipline ensures that the convention for # makes sense.
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String diagrams as syntax
The free prop on a monoidal signature
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• A inductive term language is useful, e.g. we can use structural induction



• Consider 


• then                                                                       is drawn


• to go to string diagrams we need to quotient wrt the laws of symmetric strict monoidal 
cats. This means that:


• erasing the dotted lines


• “only connectivity matters”


• This is a nice description of the free prop on a signature: in particular it is easy to see that 
given a symmetric monoidal category X, an object X∈X, and a valuation of each γ ∈ Γ 
extends uniquely (structural induction) to a symmetric monoidal functor from string 
diagrams to X

From terms to string diagrams
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Example 2.13. Consider the following signature, where the (co)arities are apparent from the

�
def
=

n
,

o
(CMG)

glyphs. The term ( ⌦ ( ⌦ )) #(( ⌦ ) # ) has sort (3, 2) and diagram:

where the “dotted line” boxes serve the role of parentheses.

Terms of (BNFT) are quotiented by the laws of symmetric strict monoidal categories. We do not
go into the details here, but these are closely connected with the diagrammatic conventions. Indeed,
they allow us to discard the “dotted line” boxes and focus only on the connectivity between the
generators. For example the following two diagrams are in the the same equivalence class of terms:

=

We refer to equivalence classes [c] : m ! n as string diagrams.

De�nition 2.14. The free prop X� on � has as arrowsm ! n string diagrams [c] : (m, n).

String diagrams can be used to specify additional equations that specify algebraic structure.

De�nition 2.15 (Monoidal theory). For a monoidal signature �, a �-equation is a pair ([c], [d])
of equally-sorted string diagrams; we usually write ‘[c] = [d]’. A monoidal theory is a pair (�, F )
where F is a set of �-equations.

Given a monoidal theory (�, F ), the induced prop X(�,F ) can obtained by taking a coequaliser
in Cat. It can alternatively be given an explicit description as follows: as arrows [m] ! [n] it has
arrows of X� quotiented by the smallest congruence containing F .

Example 2.16. Consider the signature (CMG) and the following set of equations:

E
def
=

n
= , = , =

o
. (CM)

The resulting prop CM is the prop of commutative monoids. The equations, from left to right,
express associativity, commutativity and unitality.

Remark 2.17. String diagrams inX(�,F ) are amenable to equational reasoning, often referred to as
diagrammatic reasoning in this context: if ([c], [d]) 2 F then substituting c for d inside any context
is sound. For example in CM the set of equations contains only one of the unit laws. The other
may be derived:

= = =
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A recipe for functorial semantics

• We have notion of syntax, but what should be the semantics?


• Mere symmetric monoidal categories do not have enough structure for a meaningful general solution


• This additional structure (usually a universal property) is the magic potion that makes everything 
work


• Lawvere discovered this in the 60s for universal algebra, in that case it is the notion of categorical 
product.


• the “free thing” on the signature is the syntax


• functorial semantics are functors that preserve the the thing


• as we will see symmetric monoidal categories are often convenient hosts to study “the thing” 
from an algebraic perspective 



Aside: Lawvere and cartesian categories

• Lawvere wasn’t happy with the idea of algebraic theory as we have 
introduced it in the style of universal algebra (i.e. a pair (Σ, E) )


• Equating the notion of theory with a particular presentation is not ideal since 
different presentations can yield the same notion of algebraic structure


• The syntactic account has an ad hoc underlying meta-theory: e.g. inductively 
defined terms over a fixed countable set of variables, meta theory of 
substituions, etc.



Abstract universal algebra
• Equate a theory with a category L with finite products (single sorted: with one 

generating object)


• doesn’t suffer from reliance on particular presentations 


• e.g. for commutative monoids, take the free category generated by {m,e}, 
quotient by least congruence generated by eqs


• A (classical) model is a product preserving functor L → Set 

• Model homomorphisms are natural transformations


• Simple, beautiful, easily generalisable



Finite products
• The category with free finite products on one object is FinSetop


• FinSetop has (up to equivalence) an alternative “operational” description


• objects: natural numbers, we think of m = {x1,x2,…,xm}


• arrows m → n: n-tuples of variables in {x1,x2,…,xm}, e.g.


• there is exactly one arrow 1 → 2: (x1,x1)


• there are two arrows 2 → 1: (x1) and (x2)


• composition is substitution: e.g. (x1,x1);(x2) = x1



Finite products ctd
• The category with free finite products on a signature Σ has a similar operational 

description


• objects: natural numbers, we think of m = {x1,x2,…,xm}


• arrows m → n: n-tuples of terms in T{x1,x2,…,xm}, e.g. for the sig of monoids


• there is an arrow 1 → 2: (x1,e)


• there is an arrows 2 → 1: (m)


• composition is substitution: e.g. (x1, e); (m) = m(x1, e)

Terms demystified! 

The algebra of terms and substitution is simply a convenient description of a category with free products



Algebraic structure in Set
Cartesian categories
• A symmetric monoidal category is cartesian when the monoidal product 

satisfies the universal property of categorical product


• The symmetric monoidal category Set is (by definition) such an animal


• Theorem (Fox 1976). A symmetric monoidal category is cartesian iff every object can 
be equipped with a commutative comonoid structure which is coherent and natural.
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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Lawvere with string diagrams

• A single sorted Lawvere theory is a cartesian prop 

• i.e. a prop where the monoidal product is the categorical product


• We already have one concrete description of the free cartesian category 
on a signature - arrows: classical terms, composition: substitution


• We now have a second: string diagrams!
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An obvious di↵erence between terms and string diagrams is that the latter do not
have named variables. The translation ensures that wires play the role of variables,
and the comonoid structure plays the role of “variable management”. We illustrate
this with an example below.

ex:propfromlawvere Example 2.40. The prop corresponding to the Lawvere theory induced by the equa-

tional theory of commutative monoids (Example
ex:eqtheorymonoidsex:eqtheorymonoids
2.8) is the same as the prop of

commutative bialgebra. For example, the term m(m(x, x), y) in the theory of com-

mutative monoids can be depicted as

m

m

In the term we have considered, the variable x appears twice. In the corre-

sponding diagram, the wire corresponding to x starts with a comultiplication that

witnesses the “copying of x”.

3. Algebra of partial maps
sec:partialmaps

We have seen that finite products are central in classical universal algebra. It
is therefore natural to begin our development of its partial analogue by identifying
the corresponding universal property in the partial setting. We will see that this
amounts to replacing the class of cartesian categories with the class of discrete

cartesian restriction categories (DCR categories)
Coc12
[CGH12]. Next, we characterise

DCR categories in terms of algebraic structure, analogous to
thm:foxthm:fox
2.22 for cartesian

categories.
sec:pardef

3.1. Partial functions. The starting point of our journey is the (2-)category Par
of sets and partial functions. Just as Set was the semantic universe for ordinary
equational theories, Par is the semantic universe for partial equational theories. We
first recall an elementary, set theoretic presentation:

Definition 3.1. Par has sets as objects and partial functions f : X * Y as arrows,

where a partial function f is a pair (domf, deff) where domf ✓ X is the domain of
definition of f and deff : domf ! Y is a (total) function. Given a partial function

f : X * Y , and some X
0 ✓ X we write f|X0 for the partial function (domf\X

0
, f

0)
where f

0 : domf \ X
0 ! Y is deff restricted to the (potentially smaller) domain

of definition domf \ X
0
. Similarly, given Y

0 ✓ Y , write f
�1(Y 0) = {x 2 domf |

deff(x) 2 Y
0}. Given f : X * Y and g : Y * Z, their composite is defined by

f # g = (f�1(domg), (deff |f�1(domg) # defg). The identity on X is (X, idX).
There is a natural partial order between partial functions X * Y :

f  g
def
= domf ✓ domg ^ g |domf = f.

It is straightforward to verify that this data makes Par a category, and with , a

2-category.

Categorifying partiality has long history (see e.g.,
Rob88,Coc02
[RR88, CL02]). We recall a

classical approach:

defn:parcat Definition 3.2. Suppose that C has finite limits. Its 2-category of partial maps,
Par(C) has:

�) objects are objects of C.
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A recipe

• Turn a theory into a monoidal theory in two easy steps


• Generators:


• Equations: E (as string diagrams)   +                                                            


+
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:10 Anon.

���) R admits a left adjoint L : W ! V;
���) R commutes with sifted colimits.
Given that adjunctions compose, this data yields a category Var.

Let Prod be the 2-category whose objects are small cartesian categories, morphisms are cartesian
functors and 2-cells are natural transformations. Then Observation 2.31 boils down to de�ning a
2-functor Mod : Prodop ! Var. The following captures the relationship between Law and Var.

Theorem 2.35 ([ALR03, Theorem 4.1]). There exists a 2-adjunction whose unit is an equivalence:

Th : Var⌧ Prodop : Mod

Remark 2.36. One obtains the S-sorted version of Theorem 2.35 by slicing on both sides over the
free category with products on S . This is given in more detail for partial Lawvere theories in S7.1.

2.6 Equational theories as monoidal theories
Given that Lawvere theories are cartesian props, Theorem 2.22 suggests how to consider a Lawvere
theory as a monoidal theory. We recall the recipe from [BSZ18]: the idea is to characterise �-terms
as certain string diagrams, and then view an ordinary equational theory through this lens.

Recipe 2.37. Fix a signature �. A �-term t : T [n]
� is the same thing as a string diagram n ! 1 in

the prop induced by the monoidal theory with

• generators � def
= � + (CCMG)

• (CCM) together with equations that ensure naturality with respect to the comonoid structure.
The latter can be easily added as two additional equations for each � : �:

�
�

�
= �m m m m= (SN� )

The Lawvere theory induced by equational theory (�,E) can now be seen as the prop induced
by the monoidal theory (�, F ) where F is the set of equations obtained by translating the equations
in E to string diagrams, together with (CCM), and (SN� ) for each � : �.

Example 2.38. The prop corresponding to the Lawvere theory induced by the equational theory of
commutative monoids (Example 2.8) is the same as the prop of commutative bialgebra. For example,
the termm(m(x ,x),�) in the theory of commutative monoids can be depicted as .

3 ALGEBRA OF PARTIAL MAPS
We have seen that �nite products are central in classical universal algebra. It is therefore natural to
begin our development of its partial analogue by identifying the corresponding universal property
in the partial setting. We will see that this amounts to replacing the class of cartesian categories with
the class of discrete cartesian restriction categories (DCR categories) [CGH12]. Next, we characterise
DCR categories in terms of algebraic structure, analogous to Theorem 2.22 for cartesian categories.

3.1 Partial functions
The starting point of our journey is the (2-)category Par of sets and partial functions. Just as Set
was the semantic universe for ordinary equational theories, Par is the semantic universe for partial
equational theories. We �rst recall an elementary, set theoretic presentation:

De�nition 3.1. Par has sets as objects and partial functions f : X * Y as arrows, where a
partial function f is a pair (domf , def f ) where domf ✓ X is the domain of de�nition of f and
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We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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:10 Anon.

���) R admits a left adjoint L : W ! V;
���) R commutes with sifted colimits.
Given that adjunctions compose, this data yields a category Var.

Let Prod be the 2-category whose objects are small cartesian categories, morphisms are cartesian
functors and 2-cells are natural transformations. Then Observation 2.31 boils down to de�ning a
2-functor Mod : Prodop ! Var. The following captures the relationship between Law and Var.

Theorem 2.35 ([ALR03, Theorem 4.1]). There exists a 2-adjunction whose unit is an equivalence:

Th : Var⌧ Prodop : Mod

Remark 2.36. One obtains the S-sorted version of Theorem 2.35 by slicing on both sides over the
free category with products on S . This is given in more detail for partial Lawvere theories in S7.1.

2.6 Equational theories as monoidal theories
Given that Lawvere theories are cartesian props, Theorem 2.22 suggests how to consider a Lawvere
theory as a monoidal theory. We recall the recipe from [BSZ18]: the idea is to characterise �-terms
as certain string diagrams, and then view an ordinary equational theory through this lens.

Recipe 2.37. Fix a signature �. A �-term t : T [n]
� is the same thing as a string diagram n ! 1 in

the prop induced by the monoidal theory with

• generators � def
= � + (CCMG)

• (CCM) together with equations that ensure naturality with respect to the comonoid structure.
The latter can be easily added as two additional equations for each � : �:

�
�

�
= �m m m m= (SN� )

The Lawvere theory induced by equational theory (�,E) can now be seen as the prop induced
by the monoidal theory (�, F ) where F is the set of equations obtained by translating the equations
in E to string diagrams, together with (CCM), and (SN� ) for each � : �.

Example 2.38. The prop corresponding to the Lawvere theory induced by the equational theory of
commutative monoids (Example 2.8) is the same as the prop of commutative bialgebra. For example,
the termm(m(x ,x),�) in the theory of commutative monoids can be depicted as .

3 ALGEBRA OF PARTIAL MAPS
We have seen that �nite products are central in classical universal algebra. It is therefore natural to
begin our development of its partial analogue by identifying the corresponding universal property
in the partial setting. We will see that this amounts to replacing the class of cartesian categories with
the class of discrete cartesian restriction categories (DCR categories) [CGH12]. Next, we characterise
DCR categories in terms of algebraic structure, analogous to Theorem 2.22 for cartesian categories.

3.1 Partial functions
The starting point of our journey is the (2-)category Par of sets and partial functions. Just as Set
was the semantic universe for ordinary equational theories, Par is the semantic universe for partial
equational theories. We �rst recall an elementary, set theoretic presentation:

De�nition 3.1. Par has sets as objects and partial functions f : X * Y as arrows, where a
partial function f is a pair (domf , def f ) where domf ✓ X is the domain of de�nition of f and
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= = = =

We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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e.g. as props, the Lawvere theory of commutative monoids is isomorphic to the monoidal theory of 
commutative bialgebras!
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Roadmap

• Lecture 1 - Functorial semantics 1 


• Lecture 2 - Functorial semantics 2 

• Lecture 3 - Graphical linear algebra and applications



Recap from yesterday, plan for today

• Yesterday


• traditional syntax and universal algebra 


• cartesian products and Lawvere theories


• functorial semantics, models as functors to Set


• symmetric monoidal categories as carriers of algebraic structure


• Fox’s Theorem: characterising cartesianity with algebraic structure — the presence of commutative comonoid structure that is 
coherent and natural


• Today


• Replacing Set with Par and Rel 

• partial theories (joint work with Di Liberti, Loregian and Nester)


• relational theories (joint work with Bonchi and Pavlovic, continued by Nester) 


• first-order theories (work in progress with Bonchi, Di Giorgio and Haydon)



The recipe for functorial semantics

• find out the universal property at play


• for traditional algebraic theories, this is (binary) categorical products


• find an algebraic characterisation in symmetric monoidal categories a la Fox 


• for the categorical product, this is the commutative comonoid structure that’s coherent and natural


• Then:


• syntax = string diagrams with the structure (the free thing!)


• semantics, any category with the universal property


• for traditional algebraic theories, this is usually Set, but not always


• models = functors that preserve the structure 


• homomorphisms = the canonical notion of natural transformation



The symmetric monoidal category Par

• objects are sets


• arrows are partial functions


• monoidal product is cartesian product


• symmetries are inherited from Set


• there is a natural poset enrichment


• if C has finite limits, there is a symmetric monoidal category Par(C)


• objects are those of C


• arrows from C to D are spans C ← C’ → D (up to iso) where the left leg is mono


• composition is by pullback 


• monoidal product is pointwise product


• NB: The monoidal product in Par is not the categorical product!



Algebraic structure in Par
Discrete cartesian restriction categories

• Partial theories: we want to replace Set with Par as the universe of models


• Lawvere identified cartesian categories as the categorical structure of 
interest for algebraic theories


• For partial theories, the corresponding categorical structure is given by 
discrete cartesian restriction categories (dcr categories)


• Par is a DCR category. If C has finite limits, Par(C) is a DCR category.


• Instead of delving into the details, we can characterise them using a result 
similar to Fox’s theorem



“Fox’s theorem” for DCR categories

• Theorem. A DCR category is a symmetric monoidal category where 
every object is equipped with a coherent partial Frobenius algebra 
structure, such that the comultiplication is natural.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Functorial Semantics for Partial Theories :7

= = = =

We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen

together µA, which we depict as in our string diagrams, subject to the following equations:

= = (MCA)

= = =
(SFROB)

We may now extend our preferred presentation of CR categories to DCR categories as follows:

Theorem 3.11. A DCR category is precisely a symmetric monoidal category equipped with a
coherent partial Frobenius algebra structure (A,�A, �A, µA) for each objectA s.t. the comultiplication
is natural. That is, for any f : A ! B we have f #�B = �A #(f ⌦ f ).

P����. Suppose X is a CR category in which each �A : A ! A ⌦ A has a partial inverse
µA : A ⌦A ! A. Then it is straightforward to show that µ is coherent with respect to the monoidal
structure, and that µA is always associative as commutative. The special equation holds because
�A # µA = �A = 1A, and for the Frobenius equations we use that µA = µA #�A to obtain:

= = =

= = =

From which both Frobenius identities follow. For the converse, the special equation gives that
�AµA = 1 = �A, and further we have:

µA = = = =

= = = µA #�A

meaning that µA is a partial inverse for �A. ⇤
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is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen

together µA, which we depict as in our string diagrams, subject to the following equations:

= = (MCA)

= = =
(SFROB)

We may now extend our preferred presentation of CR categories to DCR categories as follows:

Theorem 3.11. A DCR category is precisely a symmetric monoidal category equipped with a
coherent partial Frobenius algebra structure (A,�A, �A, µA) for each objectA s.t. the comultiplication
is natural. That is, for any f : A ! B we have f #�B = �A #(f ⌦ f ).

P����. Suppose X is a CR category in which each �A : A ! A ⌦ A has a partial inverse
µA : A ⌦A ! A. Then it is straightforward to show that µ is coherent with respect to the monoidal
structure, and that µA is always associative as commutative. The special equation holds because
�A # µA = �A = 1A, and for the Frobenius equations we use that µA = µA #�A to obtain:

= = =

= = =

From which both Frobenius identities follow. For the converse, the special equation gives that
�AµA = 1 = �A, and further we have:

µA = = = =

= = = µA #�A

meaning that µA is a partial inverse for �A. ⇤
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= = = =

We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of F .

Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f : 2 ! 2 where f (1) = f (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem, recalled here – this will be explained
in S2.6. Cartesian categories are categories with �nite products, and cartesian functors preserve
them. Fox showed that cartesian categories are exactly those that have a certain algebraic structure.
A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X ,�X , �X ) s.t. �X : X ! X ⌦ X and �X : X ! I , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X ,Y :

X⌦Y
X⌦Y

X⌦Y

X

Y

X

X

Y

Y

= X⌦Y
X

Y
= (coherent)

Further, we say that the � and � are natural if for any arrow f : X ! Y of X, we have:

fX
Y

Y f

f
X

Y

Y
= fX = (natural)

Theorem 2.22 ([Fox76]). A symmetric monoidal category is cartesian if and only if every object
can be equipped with a commutative comonoid structure that is (coherent) and (natural).
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Consequences
• The free DCR category on an object is Par(Fop)


• Syntax = concrete description of the free DCR category on Σ in terms of 
string diagrams with partial Frobenius structure


• A presentation is then, as usual, the pair of a signature and equations


• its partial Lawvere theory is the induced DCR prop 

• This is now a Lawvere-style functorial semantics for partial theories

Given a signature Σ, we obtain a syntax for equations!



Functorial semantics for partial theories

• We have 


• a notion of syntax - string diagrams with the additional algebraic structure


• a notion of semantics, any DCRC, but Par is a canonical choice


• a notion of model, a functor syntax→semantics that preserves the DCRC 
structure 


• a notion of model homomorphism given by the canonical notion natural 
transformations of such functors 



Examples
2-sorted
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6. Multi-Sorted Equational Theories
sec:multi

In this section we present a progression of multi-sorted partial Lawvere theories
for categories with di↵erent kinds of structure. While our development of partial
Lawvere theories has thus far focused on the single-sorted case, the move to multi-
sorted theories contains no surprises, so we omit the details. The short version
is that props are replaced with coloured props, and the sorting discipline changes
accordingly. The examples that follow are developed incrementally: Each step adds
more categorical structure to the models by adding the appropriate operations and
equations to the theory, culminating in the partial Lawvere theory of cartesian
closed categories.

ex:dirgraph Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of di-
rected graphs, which has a sort O of vertices and a sort A of edges, together with

source and target operations:

sA O tA O s =A A t =A A

The associated variety is the category of directed graphs, as model morphisms F

must satisfy:

s F F s= t F F t=

ex:reflgraphs Example 6.2 (Reflexive Graphs). Extending Example
ex:dirgraphex:dirgraph
6.1, we ask that each vertex

has a self-loop:

idO A id =O O id sO O O O= = id tO O

then morphisms of models are required to preserve the self-loop, so the associated

variety is the category of reflexive graphs. Notice that along with Example
ex:dirgraphex:dirgraph
6.1, this

could also be presented as a (total) 2-sorted Lawvere theory, since all the operations

are total.

ex:cats Example 6.3 (Categories). To capture categories we extend Example
ex:reflgraphsex:reflgraphs
6.2 with a

composition operator, which is defined when the target of the first arrow matches

the source of the second:

A

A

A

t

s

=

and equations insisting composition is associative and unital, with identities given

by the self-loops:

A

A

A

A=
A

A

A

A
s id

t id
A A A A A A= =

Model morphisms are precisely functors. It is worth noting that this involves an

inequality:

F

F

F


directed graphs
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6. Multi-Sorted Equational Theories
sec:multi

In this section we present a progression of multi-sorted partial Lawvere theories
for categories with di↵erent kinds of structure. While our development of partial
Lawvere theories has thus far focused on the single-sorted case, the move to multi-
sorted theories contains no surprises, so we omit the details. The short version
is that props are replaced with coloured props, and the sorting discipline changes
accordingly. The examples that follow are developed incrementally: Each step adds
more categorical structure to the models by adding the appropriate operations and
equations to the theory, culminating in the partial Lawvere theory of cartesian
closed categories.

ex:dirgraph Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of di-
rected graphs, which has a sort O of vertices and a sort A of edges, together with

source and target operations:

sA O tA O s =A A t =A A

The associated variety is the category of directed graphs, as model morphisms F

must satisfy:

s F F s= t F F t=

ex:reflgraphs Example 6.2 (Reflexive Graphs). Extending Example
ex:dirgraphex:dirgraph
6.1, we ask that each vertex

has a self-loop:

idO A id =O O id sO O O O= = id tO O

then morphisms of models are required to preserve the self-loop, so the associated

variety is the category of reflexive graphs. Notice that along with Example
ex:dirgraphex:dirgraph
6.1, this

could also be presented as a (total) 2-sorted Lawvere theory, since all the operations

are total.

ex:cats Example 6.3 (Categories). To capture categories we extend Example
ex:reflgraphsex:reflgraphs
6.2 with a

composition operator, which is defined when the target of the first arrow matches

the source of the second:

A

A

A

t

s

=

and equations insisting composition is associative and unital, with identities given

by the self-loops:

A

A

A

A=
A

A

A

A
s id

t id
A A A A A A= =

Model morphisms are precisely functors. It is worth noting that this involves an

inequality:

F

F

F


reflexive graphs
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6. Multi-Sorted Equational Theories
sec:multi

In this section we present a progression of multi-sorted partial Lawvere theories
for categories with di↵erent kinds of structure. While our development of partial
Lawvere theories has thus far focused on the single-sorted case, the move to multi-
sorted theories contains no surprises, so we omit the details. The short version
is that props are replaced with coloured props, and the sorting discipline changes
accordingly. The examples that follow are developed incrementally: Each step adds
more categorical structure to the models by adding the appropriate operations and
equations to the theory, culminating in the partial Lawvere theory of cartesian
closed categories.

ex:dirgraph Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of di-
rected graphs, which has a sort O of vertices and a sort A of edges, together with

source and target operations:

sA O tA O s =A A t =A A

The associated variety is the category of directed graphs, as model morphisms F

must satisfy:

s F F s= t F F t=

ex:reflgraphs Example 6.2 (Reflexive Graphs). Extending Example
ex:dirgraphex:dirgraph
6.1, we ask that each vertex

has a self-loop:

idO A id =O O id sO O O O= = id tO O

then morphisms of models are required to preserve the self-loop, so the associated

variety is the category of reflexive graphs. Notice that along with Example
ex:dirgraphex:dirgraph
6.1, this

could also be presented as a (total) 2-sorted Lawvere theory, since all the operations

are total.

ex:cats Example 6.3 (Categories). To capture categories we extend Example
ex:reflgraphsex:reflgraphs
6.2 with a

composition operator, which is defined when the target of the first arrow matches

the source of the second:

A

A

A

t

s

=

and equations insisting composition is associative and unital, with identities given

by the self-loops:

A

A

A

A=
A

A

A

A
s id

t id
A A A A A A= =

Model morphisms are precisely functors. It is worth noting that this involves an

inequality:

F

F

F

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In this section we present a progression of multi-sorted partial Lawvere theories
for categories with di↵erent kinds of structure. While our development of partial
Lawvere theories has thus far focused on the single-sorted case, the move to multi-
sorted theories contains no surprises, so we omit the details. The short version
is that props are replaced with coloured props, and the sorting discipline changes
accordingly. The examples that follow are developed incrementally: Each step adds
more categorical structure to the models by adding the appropriate operations and
equations to the theory, culminating in the partial Lawvere theory of cartesian
closed categories.

ex:dirgraph Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of di-
rected graphs, which has a sort O of vertices and a sort A of edges, together with

source and target operations:

sA O tA O s =A A t =A A

The associated variety is the category of directed graphs, as model morphisms F

must satisfy:

s F F s= t F F t=

ex:reflgraphs Example 6.2 (Reflexive Graphs). Extending Example
ex:dirgraphex:dirgraph
6.1, we ask that each vertex

has a self-loop:

idO A id =O O id sO O O O= = id tO O

then morphisms of models are required to preserve the self-loop, so the associated

variety is the category of reflexive graphs. Notice that along with Example
ex:dirgraphex:dirgraph
6.1, this

could also be presented as a (total) 2-sorted Lawvere theory, since all the operations

are total.

ex:cats Example 6.3 (Categories). To capture categories we extend Example
ex:reflgraphsex:reflgraphs
6.2 with a

composition operator, which is defined when the target of the first arrow matches

the source of the second:

A

A

A

t

s

=

and equations insisting composition is associative and unital, with identities given

by the self-loops:

A

A

A

A=
A

A

A

A
s id

t id
A A A A A A= =

Model morphisms are precisely functors. It is worth noting that this involves an

inequality:

F

F

F


categories

+ monoidal categories, cartesian restriction categories, DCR categories, cartesian categories, cartesian closed categories, …



The symmetric monoidal category Rel

• objects are sets


• arrows from X to Y are relations R⊆X×Y


• composition is relational composition: given R⊆X×Y and S⊆Y×Z, the composition R;S = { (x,z) | ∃ y. (x,y)∈R ∧ (y,z)∈S}


• poset enrichment: 2-cells are inclusions of relations


• monoidal product is cartesian product on objects. On arrows, given R⊆X×Y and R’⊆X’×Y’, R⊗R’ = { (xx’,yy’) | xRy ∧ x’R’y’}


• given a regular category C, there is a monoidal category Rel(C) with


• objects are those of C 


• arrows are jointly mono spans X ← R → Y, composition is pullback followed by factorisation


• monoidal product is given by pointwise product 


• NB. the monoidal product in Rel is not the categorical product



Algebraic structure in Rel I
Cartesian bicategories (of relations)

• every object has a commutative comonoid structure


• with right adjoints


• s.t. every morphism is a weak comonoid homomorphism


• and the comonoid and monoid structures together form a special 
Frobenius monoid


• cartesian bicategories are a general, category theoretic algebraic 
approach to relations (cf. allegories)
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Figure 7 Axioms for adjointness of and (left) adjointness of and (center) lax
comonoid morphism (right).

Interestingly, the observations we made so far su�ce to characterise query equivalence
and inclusion. This is the main theorem which we will prove in the remainder of this paper.

I Definition 16. The relation ÆCB� on the terms of GCQ is the smallest precongruence
containing the equalities in Figures 5, 6, their converses and the inequalities in Figure 7. The
relation =CB� is the intersection of ÆCB� and its converse.

I Theorem 17. ÆCB�=5

I Remark. There is an apparent redundancy in Figure 7: (CM) follows immediately from (S)
in Figure 6, while (S) can by derived from (CU), (Uop) and (U) for one inclusion and (CM)
for the other. We kept both (CM) and (S) because, as we shall see in §6, it is important to
keep the algebraic structures of Figures 6 and 7 separate.

I Example 18. Recall the example from the Introduction. We can now prove the inclusion
of queries using diagrammatic reasoning, as shown below. In the unlabeled equality we make
use of the well-known spider theorem, which holds in every special Frobenius algebra [28].
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5.1 Cartesian bicategories

The structure in Figures 6 and 7 is not arbitrary: these are exactly the laws of cartesian
bicategories, a concept introduced by Carboni and Walters [12], that we recall below.

I Definition 19. A cartesian bicategory is a symmetric monoidal category B with tensor ü
and unit I, enriched over the category of partially ordered sets, such that:
1. every object X has a special Frobenius bimonoid: a monoid X : X üX æ X, X : I æ

X, a comonoid X : X æ X ü X, X : X æ I satisfying the axioms in Figure 6;
2. the monoid and comonoid on X are adjoint (axioms in Figure 7, left and center);
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(multiplication is right adjoint to comultiplication)

Convolution is a meet semilattice
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(special Frobenius)



Functorial semantics for relation theories

• We have 


• a notion of syntax - string diagrams with the additional algebraic structure


• a notion of semantics - any cartesian bicategory of relations, but Rel is the 
canonical choice


• a notion of model - functors syntax→semantics that preserve the cartesian 
bicategory structure 


• a notion of homomorphism, given by the canonical notion of natural 
transformations of such functors



A curious property of Rel
• There is a “De Morgan” version or Rel as a monoidal category. 

• From now, let us call the usual one Rel+. The other we will call Rel-.


• Both Rel+ and Rel- have the same objects, and monoidal product on objects is cartesian product. But: 


• Rel- composition works as follows: given R⊆X×Y and S⊆Y×Z, 


• R;S={ (x,z) | ∀ y. xRy ∨ ySz }


• what is the identity?


• On arrows, given R ⊆ X×Y and R’ ⊆ X’×Y’, 


• R⊗R’ = { (xx’,yy’) | xRy ∨ x’R’y’}


• what are the symmetries?


• Rel+ and Rel- are isomorphic as symmetric monoidal categories



The linear bicategory Rel
• there are two compositions and two tensors


• satisfying linear distributivity
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0 ,•� (1 ,•� 2 ) = (0 ,•�1) ,•� 2 83•�< ,•� 2 = 2 = 2 ,•� 83•�=
(0 �⌦ 1) ,•� (2 �⌦ 3 ) = (0 ,•� 2 ) �⌦ (1 ,•�3 )

83•�0 �⌦ 2 = 2 = 83•�0 �⌦ 2 (0 �⌦ 1) �⌦ 2 = 0 �⌦ (1 �⌦ 2 )
f•�

1,1 ,•� f•�
1,1 = 83•�2 (2 �⌦ 83•�> ) ,•� f•�

=,> = f•�
<,> ,•� (83•�> �⌦ 2 )

Table 3. Axioms of strict symmetric monoidal categories

by vertically “stacking” circuits. However, since in our syntax we have two compositions ,� and ,• and two monoidal
products ⌦ and �⇥, to distinguish them we use di�erent colours. We draw 2 ,� 3 , 2 ⌦ 3 , 2 ,• 3 and 2 �⇥ 3 respectively as:

2 3
2

3
2 3

2

3
.

As expected, all the constants of the white fragment have white background, while those of the black fragment a
black background: for instance 83�1 and 83•1 are depicted as and . Indeed, the diagrammatic counterpart to

(NPR�

⌃,NPR•

⌃) is the following:

2 ::= | | ' | | | | | | 2 2 |

2

2
|

| | ' | | | | | | 2 2 |

2

2
(Diag⌃)

For instance the terms in (8) are depicted as the following two diagrams:

INSERT DIAGRAMS

Note that, the rightmost diagram not only represents the term J�1 ,� (('� ⌦ (�) ,� I�1 ) but also the term (J�1 ,� ('� ⌦

(�)) ,� I�1 . Indeed, it is clear that traditional term-based syntax carries more information than the diagrammatic one
(e.g. associativity). From the point of view of the semantics, however, this bureaucaracy is irrelevant and is conveniently
discarded by the diagrammatic notation. To formally show this, it is enough to see that diagrams capture only the
axioms of symmetric monoidal categories [8, 17], illustrated in Table 2, and that these are sound wrt ⌘.

More precisely, let SMC be the well-typed relation obtained by substituting 0,1, 2,3 in the axioms in Table 2 with
terms of the appropriate type. Its congruence closure is called structural congruence, written ⇡. In symbols ⇡ def= c(SMC) .
To say that terms 2 and 3 can be proved equal with the axioms in Table 2 is to day 2 ⇡ 3 . For instance, by replacing
in the top leftmost axiom in Table 2, 0 with J�1 , 1 with '� ⌦ (� and 2 with I�1 , it holds that J�1 ,� (('� ⌦ (�) ,� I�1
)SMC(J�1 ,� ('� ⌦ (�)) ,� I�1 and so 83�1 �⇥ (J�1 ,� (('� ⌦ (�) ,� I�1 )) ⇡ 83�1 �⇥ ((J�1 ,� ('� ⌦ (�)) ,� I�1 ).

P���������� 2.4. All the axioms in Table 2 are sound, i.e., for all terms 2,3 , if 2 ⇡ 3 then 2 ⌘ 3 .

P����. Let Rel�- be the category with objects the natural numbers and arrows = ! < relations ' ✓ -=
⇥ -< ,

composed by means of ,� . Let monoidal product on objects be addition and on arrows act as ⌦: one obtains a symmetric
strict monoidal category, which is an immediate consequence of the well-known fact that the monoidal category of
relations with cartesian product as monoidal product is symmetric monoidal. It follows that that ,� , ⌦ satisfy the
required axioms in any interpretation. Less common is the monoidal category Rel•- , with the same objects and arrows
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Table 3. Axioms of strict symmetric monoidal categories
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products ⌦ and �⇥, to distinguish them we use di�erent colours. We draw 2 ,� 3 , 2 ⌦ 3 , 2 ,• 3 and 2 �⇥ 3 respectively as:
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As expected, all the constants of the white fragment have white background, while those of the black fragment a
black background: for instance 83�1 and 83•1 are depicted as and . Indeed, the diagrammatic counterpart to

(NPR�

⌃,NPR•

⌃) is the following:

2 ::= | | ' | | | | | | 2 2 |
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| | ' | | | | | | 2 2 |
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(Diag⌃)

For instance the terms in (8) are depicted as the following two diagrams:

INSERT DIAGRAMS

Note that, the rightmost diagram not only represents the term J�1 ,� (('� ⌦ (�) ,� I�1 ) but also the term (J�1 ,� ('� ⌦
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(e.g. associativity). From the point of view of the semantics, however, this bureaucaracy is irrelevant and is conveniently
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To say that terms 2 and 3 can be proved equal with the axioms in Table 2 is to day 2 ⇡ 3 . For instance, by replacing
in the top leftmost axiom in Table 2, 0 with J�1 , 1 with '� ⌦ (� and 2 with I�1 , it holds that J�1 ,� (('� ⌦ (�) ,� I�1
)SMC(J�1 ,� ('� ⌦ (�)) ,� I�1 and so 83�1 �⇥ (J�1 ,� (('� ⌦ (�) ,� I�1 )) ⇡ 83�1 �⇥ ((J�1 ,� ('� ⌦ (�)) ,� I�1 ).

P���������� 2.4. All the axioms in Table 2 are sound, i.e., for all terms 2,3 , if 2 ⇡ 3 then 2 ⌘ 3 .

P����. Let Rel�- be the category with objects the natural numbers and arrows = ! < relations ' ✓ -=
⇥ -< ,

composed by means of ,� . Let monoidal product on objects be addition and on arrows act as ⌦: one obtains a symmetric
strict monoidal category, which is an immediate consequence of the well-known fact that the monoidal category of
relations with cartesian product as monoidal product is symmetric monoidal. It follows that that ,� , ⌦ satisfy the
required axioms in any interpretation. Less common is the monoidal category Rel•- , with the same objects and arrows
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composed by means of ,� . Let monoidal product on objects be addition and on arrows act as ⌦: one obtains a symmetric
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Cartesian bicategories + linear bicategories = first order bicategories
… a totally algebraic approach to first-order logic and first order theories
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Table 3. Axioms of strict symmetric monoidal categories

by vertically “stacking” circuits. However, since in our syntax we have two compositions ,� and ,• and two monoidal
products ⌦ and �⇥, to distinguish them we use di�erent colours. We draw 2 ,� 3 , 2 ⌦ 3 , 2 ,• 3 and 2 �⇥ 3 respectively as:

2 3
2

3
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As expected, all the constants of the white fragment have white background, while those of the black fragment a
black background: for instance 83�1 and 83•1 are depicted as and . Indeed, the diagrammatic counterpart to

(NPR�

⌃,NPR•

⌃) is the following:

2 ::= | | ' | | | | | | 2 2 |
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(Diag⌃)

For instance the terms in (8) are depicted as the following two diagrams:

INSERT DIAGRAMS

Note that, the rightmost diagram not only represents the term J�1 ,� (('� ⌦ (�) ,� I�1 ) but also the term (J�1 ,� ('� ⌦

(�)) ,� I�1 . Indeed, it is clear that traditional term-based syntax carries more information than the diagrammatic one
(e.g. associativity). From the point of view of the semantics, however, this bureaucaracy is irrelevant and is conveniently
discarded by the diagrammatic notation. To formally show this, it is enough to see that diagrams capture only the
axioms of symmetric monoidal categories [8, 17], illustrated in Table 2, and that these are sound wrt ⌘.

More precisely, let SMC be the well-typed relation obtained by substituting 0,1, 2,3 in the axioms in Table 2 with
terms of the appropriate type. Its congruence closure is called structural congruence, written ⇡. In symbols ⇡ def= c(SMC) .
To say that terms 2 and 3 can be proved equal with the axioms in Table 2 is to day 2 ⇡ 3 . For instance, by replacing
in the top leftmost axiom in Table 2, 0 with J�1 , 1 with '� ⌦ (� and 2 with I�1 , it holds that J�1 ,� (('� ⌦ (�) ,� I�1
)SMC(J�1 ,� ('� ⌦ (�)) ,� I�1 and so 83�1 �⇥ (J�1 ,� (('� ⌦ (�) ,� I�1 )) ⇡ 83�1 �⇥ ((J�1 ,� ('� ⌦ (�)) ,� I�1 ).

P���������� 2.4. All the axioms in Table 2 are sound, i.e., for all terms 2,3 , if 2 ⇡ 3 then 2 ⌘ 3 .

P����. Let Rel�- be the category with objects the natural numbers and arrows = ! < relations ' ✓ -=
⇥ -< ,

composed by means of ,� . Let monoidal product on objects be addition and on arrows act as ⌦: one obtains a symmetric
strict monoidal category, which is an immediate consequence of the well-known fact that the monoidal category of
relations with cartesian product as monoidal product is symmetric monoidal. It follows that that ,� , ⌦ satisfy the
required axioms in any interpretation. Less common is the monoidal category Rel•- , with the same objects and arrows
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One can prove completeness (in Gödel’s sense, in the style of Henkin) in this theory



First order theories, algebraically

• natural encodings of various flavours of relational algebras


• diagrammatic syntax closely related to 19th century string diagrams: Peirce’s 
existential graphs


• a variable free treatment of first order logic, with a sound and complete 
axiomatisation


• easy encoding of Quine’s predicate functor logic


• a functorial semantics story, in the style we have seen so far

sans variables, quantifiers…



Summary

• Lawvere identified a universal property - cartesian products - which via Fox’s theorem gives you an 
algebraic structure


• Such algebraic structures can be studied as additional structure on symmetric monoidal categories


• Once you know the universal property <-> algebraic structure, the entire functorial semantics story 
falls out, we have:


• a notion of syntax - string diagrams with the additional algebraic data built in 


• a notion of semantic universe - any category with the right structure, but typically there is a 
“canonical” one - Set, Par, or Rel in the examples 


• a notion of model - a functor syntax→semantics that preserves the structure 


• a notion of homomorphism - natural transformations



Pawel Sobocinski, Tallinn University of Technology

Diagrammatic relational algebra 
and applications
CATMI, Bergen, June 26-30 2023



Roadmap

• Lecture 1 - Functorial semantics 1 


• Lecture 2 - Functorial semantics 2


• Lecture 3 - Graphical linear algebra and applications



Recap and roadmap

• In the first two lectures we generalised Lawvere’s functorial semantics to


• partial algebraic theories


• relational theories


• first-order theories 


• in each case string diagrams in symmetric monoidal categories are useful as 
carriers of the relevant categorical structure, seen algebraically 


• in particular, they give us a nice syntactic calculus


• Today. Two relational theories: graphical linear algebra and graphical affine algebra



Two symmetric monoidal categories 
• Our task is to axiomatise the following:


• Given a field k, LinRelk is the smc where 


• objects are natural numbers


• arrows m to n are linear relations m → n 

• i.e. those relations R ⊆ km+n that are also k-linear subspaces


• (ordinary) relational composition of linear relations is a linear relation


• Similarly, AffRelk is the smc where arrows are affine relations


• Given a field k, an affine relation m→n is a relation R ⊆ km×kn which is either empty, or s.t. there is a linear relation C and a 
vector (a,b) s.t. R = (a,b) + C


• relational composition of affine relations is an affine relation



Starting point: the theory of  bialgebras
=

=

=

=

=

=

=

= = =

Let B be the free prop on this data - we know that it is isomorphic 
to the Lawvere theory of commutative monoids



First glimpse of linear algebra

• let Mat be the prop where arrows m→n are n×m matrices of natural numbers 


• e.g.


• composition is matrix multiplication


• monoidal product is direct sum


• symmetries are permutation matrices 


• it’s also true that B ≅ Mat

�
0 5

�
: 2 ! 1

✓
3
15

◆
: 1 ! 2

✓
1 2
3 4

◆
: 2 ! 2

A1 �A2 =

✓
A1 0
0 A2

◆



Where do the naturals come from?

• A syntactic sugar:


• For similar reasons, the following are isomorphic


• monoidal theory of Hopf algebra H


• Lawvere theory of abelian groups


• The prop of matrices over the integers

0 :=

k+1 :=
k

+1 is “add one path”

✓
2 0
3 1

◆

<latexit sha1_base64="5eBKaPWk+U1JkoNfjZzuJXMiMxQ="></latexit>

2

3



p p =

(p ≠ 0) p p =

(p ≠ 0) 

Interacting Hopf algebras aka graphical linear algebra
The relational theory of linear relations

IH ≅ LinRelQ

White monoid

(adding)

Black comonoid

(copying)

White comonoid

(adding-op)

Black monoid

(copying-op)

Hopf Hopf

Frobenius

Frobenius

=

=

=

=

=

=

=

=

=

=

=

=

This is the relational theory of linear relations. Moreover:



IH ≅ LinRelQ
Where do the generators go?

2 String Diagrammatic Electrical Circuit Theory

symmetries—e.g. the independent measurement principle (Theorem 5) vs the Superposition Theorem
(Theorem 6); the principle of relativity of potentials (Proposition 7) vs the principle of conservation
of currents (Proposition 8). On the other, we show that the compositional framework—with its use of
diagrammatic reasoning and the algebra of cartesian and abelian categories of relations—leads to elegant
and rigorous proofs.

2 Graphical Affine Algebra and Electrical Circuits

We begin with the basics of Graphical Linear Algebra (GLA) with its equational theory of Interacting
Hopf Algebras (IH) [4]. Fix a field k. GLA is a string diagrammatic syntax, which organises itself as the
arrows of the free prop GLAk over the following monoidal signature:

{ , , k , , , (1)
, , k , , } (2)

where k 2 k is a scalar. Intuitively the black structure can be thought of as copying, the white as adding.
This is borne out by the intended semantics, which we describe next.

The prop of linear relations LinRelk has as arrows m ! n relations R ✓ km ⇥ kn, which are k-vector
spaces; i.e. closed under k-linear combinations. In other words, arrows m ! n are linear subspaces
of km ⇥ kn considered as a k-vector space. Composition is standard relational composition, R ; S =
{(u,w) | 9v. (u,v) 2 R ^ (v,w) 2 S}. It is simple to show linear relations are closed under composition.

The semantics of GLA is a prop morphism [�]k : GLAk ! LinRelk. Since GLAk is free, it is enough
to describe its action on the generators. We do so below for the generators in 1; the corresponding
generators in 2 are sent to the opposite relations. In each case the variables range over k.

[ ]k =
��

x,(x
x)
� 

, [ ]k = {(x, •)}, [ k ]k = {(x, kx)},

[ ]k =
��

(x
y),x+y

� 
, [ ]k = {(•, 0)}

The associated theory IH characterises linear relations. We give a brief overview below:
• both monoids ( , ) ( , ) and comonoids ( , ), ( , ) are commutative;

• monoids and comonoids of the opposite colour satisfy the equations of commutative bialgebras;

• monoids and comonoids of the same colour satisfy the extra special Frobenius equations;

• to pass between black and white cups and caps is to compose with �1. We shall often draw the
�1 scalar as .

• All non-zero scalars are invertible, with the inverse of k given by k for k 6= 0.
Graphical Affine Algebra was introduced in [3], extending the expressivity of GLA to affine relations.

Let us recall the main concepts. A translation v +V of a linear subspace V by a vector v is the set
v +V = {v + w | w 2 V }. An affine subspace W is either empty, or it is the translation v +V for some
vector v and subspace V . Note that the empty set is an affine subspace, but it is not a linear subspace.

The prop of affine relations A↵Relk has as affine subspaces of km ⇥kn as arrows m ! n. It is the case
that the composition of two affine relations yields an affine relation, and can be shown using the notion
of homogenisation [3, Proposition 6], but we will not delve into the details here.

On the syntactic side, we extend the signature (1), (2) with a single generator

(3)
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The associated theory IH characterises linear relations. We give a brief overview below:
• both monoids ( , ) ( , ) and comonoids ( , ), ( , ) are commutative;

• monoids and comonoids of the opposite colour satisfy the equations of commutative bialgebras;

• monoids and comonoids of the same colour satisfy the extra special Frobenius equations;

• to pass between black and white cups and caps is to compose with �1. We shall often draw the
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• All non-zero scalars are invertible, with the inverse of k given by k for k 6= 0.
Graphical Affine Algebra was introduced in [3], extending the expressivity of GLA to affine relations.

Let us recall the main concepts. A translation v +V of a linear subspace V by a vector v is the set
v +V = {v + w | w 2 V }. An affine subspace W is either empty, or it is the translation v +V for some
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that the composition of two affine relations yields an affine relation, and can be shown using the notion
of homogenisation [3, Proposition 6], but we will not delve into the details here.
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Linear algebra = how these four relations and their opposites interact



Where do the rationals come from?

p q r s = p r sq

= rp sq

p q

r s
=

p q

r s

s s

q q

sp sq

qr qs

sp

qr
sq

=

=

= sp+qr sq

multiplication:

addition:p qp

q
<latexit sha1_base64="IEhLr66L8NU5iwRwwTuwLNcm5pw=">AAACF3icbVC7TsMwFHV4lvIqMLJYVEhMVVKQYKxgYSwSfUhpVDmO01q1nWA7iCjKZzCwwKewIVZGvoQVp81AW450paNz7tW99/gxo0rb9re1srq2vrFZ2apu7+zu7dcODrsqSiQmHRyxSPZ9pAijgnQ01Yz0Y0kQ9xnp+ZObwu89EqloJO51GhOPo5GgIcVIG8kdhBLhLM6zh3xYq9sNewq4TJyS1EGJ9rD2MwginHAiNGZIKdexY+1lSGqKGcmrg0SRGOEJGhHXUIE4UV42PTmHp0YJYBhJU0LDqfp3IkNcqZT7ppMjPVaLXiH+57mJDq+8jIo40UTg2aIwYVBHsPgfBlQSrFlqCMKSmlshHiOTgjYpzW1RmiOZymDuk+wpLZJyFnNZJt1mwzlvNO8u6q3rMrMKOAYn4Aw44BK0wC1ogw7AIALP4BW8WS/Wu/Vhfc5aV6xy5gjMwfr6BX0yod4=</latexit>

:=



But what about division by 0?

• it’s ok, nothing blows up


• two ways of interpreting 0/0

0 =

0 =

0 0 =

0 0 =

0
(x, 1/2 x)

(x, 2x)



An extended number system

• LinRelQ[1,1] 


• projective arithmetic with two additional elements


• the unique 0-dimensional subspace ⊥ = { (0,0) }


• The unique 2-dimensional subspace ⊤ = { (x,y) | x,y ∈ Q }

0 =

def

def

def

∞ =

⊤ =

⊥ =

+ 0 r/s ∞ ⊤ ⊥

0 0 r/s ∞ ⊤ ⊥

p/q – (sp+qr)/qs ∞ ⊤ ⊥

∞ – – ∞ ∞ ∞

⊤ – – – ⊤ ∞

⊥ – – – – ⊥

× 0 r/s ∞ ⊤ ⊥

0 0 0 ⊥ 0 ⊥

p/q 0 pr/qs ∞ ⊤ ⊥

∞ ⊤ ∞ ∞ ⊤ ∞

⊤ ⊤ ⊤ ∞ ⊤ ∞

⊥ 0 ⊥ ⊥ 0 ⊥



Some linear algebraic concepts in the graphical syntax

• transpose


• combine colour and mirror image symmetries


• kernel


• cokernel


• image


• coimage

Am n A mn

A

A

A

A

Fact. Given a linear subspace R:0->k in 
LinRel, its orthogonal complement R⊥ is its 
colour inverted diagram

Corollary. The “fundamental theorem of linear 
algebra” has no mathematical content

✓
x
y

◆
| x+ 2y = 0

<latexit sha1_base64="/t12kBlyngMLRbm3q2iKzHuNcTc="></latexit>

✓
x
2x

◆

<latexit sha1_base64="Jb3o4lb8PmjsLy7SnrHWyErKBLs=">AAACQXicbVC7TsMwFHV4U14FRhaLCgmWKilIMCJYGEGigNRUlePctBaOE9k3qFGUD+FrGFjgE/gENsTCwIJbMlDgSJaOzrkP3xOkUhh03Rdnanpmdm5+YbG2tLyyulZf37gySaY5tHkiE30TMANSKGijQAk3qQYWBxKug9vTkX99B9qIRF1inkI3Zn0lIsEZWqlX3/clRLhb8wPoC1UwrVleFrykQ+r7tDWk1AcVVrqvRX+Ae716w226Y9C/xKtIg1Q479U//DDhWQwKuWTGdDw3xa4dioJLKGt+ZiBl/Jb1oWOpYjGYbjE+rqQ7VglplGj7FNKx+rOjYLExeRzYypjhwPz2RuJ/XifD6KhbCJVmCIp/L4oySTGho6RoKDRwlLkljGth/0r5gGnG0eY5scVgzHSuw4lLimFe2qS837n8JVetprffbF0cNI5PqswWyBbZJrvEI4fkmJyRc9ImnNyTB/JEnp1H59V5c96/S6ecqmeTTMD5/ALcTbGp</latexit>

kerA = im(AT )?
<latexit sha1_base64="3VHOMTv8TqIVI9qoTyCw+igiQXc="></latexit>

kerAT = im(A)?
<latexit sha1_base64="ODdHJ28dBX/ZDZQFCWhNgzq/dgk="></latexit>



Factorisations
• every diagram can be factorised as a span or cospan of matrices


• two different ways to think of linear spaces

solutions of a list of 

homogeneous equations

linear combinations 

of basis vectors

x+y=0

x

y

z

2y-z=0

2

x

y

z

x+y=0
2y-z=0

2

x

y

z

Cospans

a[1, -1, 0]

a

b[0, 1, 2]

2 b

a[1, -1, 0]+b[0,1,2]

2

a

b

Spans



Linear algebra with string diagrams

• the syntax exhibits the beautiful symmetries of linear algebra


• given that the theory is sound and complete, all standards results can be 
proved with diagrammatic reasoning


• linear algebra done righter?


• next, affine relations



Diagrammatic syntax for affine relations

2 String Diagrammatic Electrical Circuit Theory

symmetries—e.g. the independent measurement principle (Theorem 5) vs the Superposition Theorem
(Theorem 6); the principle of relativity of potentials (Proposition 7) vs the principle of conservation
of currents (Proposition 8). On the other, we show that the compositional framework—with its use of
diagrammatic reasoning and the algebra of cartesian and abelian categories of relations—leads to elegant
and rigorous proofs.

2 Graphical Affine Algebra and Electrical Circuits

We begin with the basics of Graphical Linear Algebra (GLA) with its equational theory of Interacting
Hopf Algebras (IH) [4]. Fix a field k. GLA is a string diagrammatic syntax, which organises itself as the
arrows of the free prop GLAk over the following monoidal signature:

{ , , k , , , (1)
, , k , , } (2)

where k 2 k is a scalar. Intuitively the black structure can be thought of as copying, the white as adding.
This is borne out by the intended semantics, which we describe next.

The prop of linear relations LinRelk has as arrows m ! n relations R ✓ km ⇥ kn, which are k-vector
spaces; i.e. closed under k-linear combinations. In other words, arrows m ! n are linear subspaces
of km ⇥ kn considered as a k-vector space. Composition is standard relational composition, R ; S =
{(u,w) | 9v. (u,v) 2 R ^ (v,w) 2 S}. It is simple to show linear relations are closed under composition.

The semantics of GLA is a prop morphism [�]k : GLAk ! LinRelk. Since GLAk is free, it is enough
to describe its action on the generators. We do so below for the generators in 1; the corresponding
generators in 2 are sent to the opposite relations. In each case the variables range over k.

[ ]k =
��

x,(x
x)
� 

, [ ]k = {(x, •)}, [ k ]k = {(x, kx)},

[ ]k =
��

(x
y),x+y

� 
, [ ]k = {(•, 0)}

The associated theory IH characterises linear relations. We give a brief overview below:
• both monoids ( , ) ( , ) and comonoids ( , ), ( , ) are commutative;

• monoids and comonoids of the opposite colour satisfy the equations of commutative bialgebras;

• monoids and comonoids of the same colour satisfy the extra special Frobenius equations;

• to pass between black and white cups and caps is to compose with �1. We shall often draw the
�1 scalar as .

• All non-zero scalars are invertible, with the inverse of k given by k for k 6= 0.
Graphical Affine Algebra was introduced in [3], extending the expressivity of GLA to affine relations.

Let us recall the main concepts. A translation v +V of a linear subspace V by a vector v is the set
v +V = {v + w | w 2 V }. An affine subspace W is either empty, or it is the translation v +V for some
vector v and subspace V . Note that the empty set is an affine subspace, but it is not a linear subspace.

The prop of affine relations A↵Relk has as affine subspaces of km ⇥kn as arrows m ! n. It is the case
that the composition of two affine relations yields an affine relation, and can be shown using the notion
of homogenisation [3, Proposition 6], but we will not delve into the details here.

On the syntactic side, we extend the signature (1), (2) with a single generator

(3)
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obtaining a richer string diagrammatic syntax as the arrows of the free prop GAA. Abusing notation,
the semantics [�]k : GAA ! A↵Relk is defined the same way as for GLA on the shared generators, and
[ ]k = {(•, 1)}. To characterise A↵Relk we add the following equations:

(dup)
=

(del)
=

(empty)
=

Instead of relying purely on equational reasoning, it is often convenient to work with inequations,
which can lead to shorter calculations, and allow us to identify some interesting, higher-level categorical
structures. Instead of working with ordinary props, one works with ordered props, that is props enriched
over the category of posets. Similarly any equational theory can be presented as an inequational theory
in the obvious way, by replacing an equation by two inequations.

Indeed, LinRelk and A↵Relk can be considered as ordered props by using set-theoretical inclusion of
relations as the homset order. On the syntactic side, it suffices [2] to add a single inequation:



The ordered setting also lends itself to higher level reasoning schema. In particular, LinRelk is an abelian
bicategory of relations and A↵Relk is a cartesian bicategory of relations, concepts developed in [5].

2.1 The prop of electrical circuits and its semantics

We recall the string diagrammatic development of electrical circuits from [3], with minor modifications
to suit our development in subsequent sections. The prop ECirc is free on the following signature:

(
R

, +–
V

,
I

,
L

,
C

)

R,L,C2R+,V,I2R

[
⇢

, , ,

�
(4)

where the parameters range over the reals. Arrows m ! n of ECirc represent open linear electrical circuits

with m open terminals on the left and n open terminals on the right. Generator
R

represents a resistor,

+–
V

a voltage source,
I

a current source,
L

an inductor and
C

a capacitor.
Circuits in ECirc are translated to GAA over R(x): the field of fractions of polynomials with real

coefficients (see [6, 3]). The semantics is a strict monoidal functor I : ECirc ! GAA where I (1) = 2
on objects: the idea is that every electrical wire is represented by two GAA wires, the voltage wire on
top and the current wire on the bottom. We give the semantics in Figure 1, by showing the action on
generators. Given circuits c,d of ECirc we write c I

= d when I (c) = I (d) (in the equational theory of

GAA, or equivalently as affine relations in A↵RelR(x)). Similarly, we write c
I
 d when I (c)  I (d).

3 The Impedance Calculus

We now exploit a pattern of the semantics in Figure 1 to simplify the passage between circuits and GAA.
This results in the impedance calculus, which can be used to simplify diagrammatic reasoning on circuits.

We extend the syntax (4) of ECirc with impedance boxes—illustrated in (5)—parametrised with
respect to arbitrary GAA circuits of type (1, 1): that is, with one wire on the left and one on the right. We

G. Boisseau & P. Sobociński 3
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For affine relations, we only need one 
new generator!



Equational characterisation
Fig. 4. Two additive and two N-affine relations.

Our characterisation will extend this isomorphism to affine
systems. The challenge is to identify equations that govern the
behaviour of the new generator . We claim that adding the
following three equations is sufficient:

(dup)
=

(del)
=

(?)
=

First, let us explain the new axioms. The first two say that
can be deleted and copied by the comonoid structure, just

like . This has the effect of constraining the interpretation
of as a 0-ary functional relation, i.e. it is a constant.

More interestingly, the third equation is justified by the
possibility of expressing the empty set, by, for example,

h iK = {(•, 1)} ; {(0, •)} = ?. (16)

As mentioned previously, ? is an affine relation that is not
linear. Since for any R and S in RelR, ? � R = ? � S =
?, composing or taking the monoidal product of ? with any
relation results in ?. Thus ? is analogous to logical false.

Definition 15. The prop AIHK (affine interacting Hopf alge-
bras) is the quotient of ACircK by the equations of IHK plus
(dup), (del) and (?).

We are going to show that AIHK is isomorphic to A↵RelK.
First, the following lemma formalises the preceding discussion
about equation (?).

Lemma 16. For any two arrows c, d : k ! l of AIHK,

c
lk = d

k l

We are now ready to prove our characterisation result.
Because all the equations of AIHK are sound in LinRelK,
we can define a prop morphism J� KK : AIHK ! LinRelK
inductively by the same clauses (Fig. 2) of h · iK.

Theorem 17. J · KK : AIHK ! LinRelK is a prop isomorphism.

Proof. First, we show that J · KK is full. Diagrammatically,
homogenisation means that K-affine relations can be thought
of as K-linear relations with an extra dangling wire for the
additional dimension. Because the restriction of J� KK to a
functor IHK ! LinRelK is well-defined and an isomorphism
(thus, also full) [3, Theorem 6.4], we can always obtain a
string diagram dR̂ in IHK for the homogenisation R̂ of an

affine relation R. Then, we can use generator to plug this
wire, obtaining a string diagram

dR̂ lk .

Finally, equation (12) implies that
u

v dR̂ lk

}

~

K

= R

proving that J� KK is full. It remains to show that J� KK is
faithful. We will use a normal form argument, which relies
on the isomorphism of IHK and LinRelK [3, Theorem 6.4].
Let d : k ! l be a diagram in AIHK. By naturality of the
symmetry we may write d as follows:

d
lk = c

l

k

(17)

for some diagram c, in the image of the embedding IHK ,!
AIHK. In graphical terms, we have pulled all copies of up
and down, past the rest of the diagram which represents some
linear relation c. We may now simplify (17):

c
l

k

(dup)
= c

l

k

= c
0 l

k

where c
0 is the diagram enclosed in the dotted box. Finally,

[3, Theorem 6.2] shows that any linear relation is the image
of a matrix (this is its so-called span form). Thus, using
the isomorphism LinRelK ⇠= IHK, we can find a diagram
e : p ! l + 1 + k representing some matrix Me (i.e.,
J e KK = {(a,Mea) | a 2 Kp}), such that the columns of Me

generate J c0 KK. This translates to the following diagrammatic
equation in which we distinguish matrices using a directed
box notation:

c
0 l

k
=

e

l

k

p

IHA ≅ AffRelQ

Together with the equations of IH, this is the relational theory of affine relations. Moreover:



Case study
Non-passive electrical circuits

• work with the diagrammatic language for AffRelR[x]


• introduce a syntactic prop of electrical circuits 


• develop diagrammatic reasoning techniques


• the impedance calculus


• prove classical “theorems” of electrical circuit theory



The prop of electrical circuits
• ECirc, free on the following signature    


• resistor 


• voltage source 


• current source 


• inductor 


• capacitor

G. Boisseau & P. Sobociński 3

obtaining a richer string diagrammatic syntax as the arrows of the free prop GAA. Abusing notation,
the semantics [�]k : GAA ! A↵Relk is defined the same way as for GLA on the shared generators, and
[ ]k = {(•, 1)}. To characterise A↵Relk we add the following equations:

(dup)
=

(del)
=

(empty)
=

Instead of relying purely on equational reasoning, it is often convenient to work with inequations,
which can lead to shorter calculations, and allow us to identify some interesting, higher-level categorical
structures. Instead of working with ordinary props, one works with ordered props, that is props enriched
over the category of posets. Similarly any equational theory can be presented as an inequational theory
in the obvious way, by replacing an equation by two inequations.

Indeed, LinRelk and A↵Relk can be considered as ordered props by using set-theoretical inclusion of
relations as the homset order. On the syntactic side, it suffices [2] to add a single inequation:



The ordered setting also lends itself to higher level reasoning schema. In particular, LinRelk is an abelian
bicategory of relations and A↵Relk is a cartesian bicategory of relations, concepts developed in [5].

2.1 The prop of electrical circuits and its semantics

We recall the string diagrammatic development of electrical circuits from [3], with minor modifications
to suit our development in subsequent sections. The prop ECirc is free on the following signature:

(
R

, +–
V

,
I

,
L

,
C

)

R,L,C2R+,V,I2R

[
⇢

, , ,

�
(4)

where the parameters range over the reals. Arrows m ! n of ECirc represent open linear electrical circuits

with m open terminals on the left and n open terminals on the right. Generator
R

represents a resistor,

+–
V

a voltage source,
I

a current source,
L

an inductor and
C

a capacitor.
Circuits in ECirc are translated to GAA over R(x): the field of fractions of polynomials with real

coefficients (see [6, 3]). The semantics is a strict monoidal functor I : ECirc ! GAA where I (1) = 2
on objects: the idea is that every electrical wire is represented by two GAA wires, the voltage wire on
top and the current wire on the bottom. We give the semantics in Figure 1, by showing the action on
generators. Given circuits c,d of ECirc we write c I

= d when I (c) = I (d) (in the equational theory of

GAA, or equivalently as affine relations in A↵RelR(x)). Similarly, we write c
I
 d when I (c)  I (d).

3 The Impedance Calculus

We now exploit a pattern of the semantics in Figure 1 to simplify the passage between circuits and GAA.
This results in the impedance calculus, which can be used to simplify diagrammatic reasoning on circuits.

We extend the syntax (4) of ECirc with impedance boxes—illustrated in (5)—parametrised with
respect to arbitrary GAA circuits of type (1, 1): that is, with one wire on the left and one on the right. We
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relations as the homset order. On the syntactic side, it suffices [2] to add a single inequation:
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where the parameters range over the reals. Arrows m ! n of ECirc represent open linear electrical circuits

with m open terminals on the left and n open terminals on the right. Generator
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represents a resistor,
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V

a voltage source,
I

a current source,
L

an inductor and
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Circuits in ECirc are translated to GAA over R(x): the field of fractions of polynomials with real

coefficients (see [6, 3]). The semantics is a strict monoidal functor I : ECirc ! GAA where I (1) = 2
on objects: the idea is that every electrical wire is represented by two GAA wires, the voltage wire on
top and the current wire on the bottom. We give the semantics in Figure 1, by showing the action on
generators. Given circuits c,d of ECirc we write c I

= d when I (c) = I (d) (in the equational theory of

GAA, or equivalently as affine relations in A↵RelR(x)). Similarly, we write c
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We now exploit a pattern of the semantics in Figure 1 to simplify the passage between circuits and GAA.
This results in the impedance calculus, which can be used to simplify diagrammatic reasoning on circuits.
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then extend the semantic mapping I (·) to cover impedance boxes, as below right.
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The following are now easy derivations in the equational theory of GAA:

I
= , +–

V I
= V ,

I I
= I ,

R I
= R ,

L I
= Lx ,

C I
= Cx .

We now prove results that give the impedance calculus its power and allow us to manipulate impedance

boxes within circuits. Henceforward we will use the syntactic sugar def
= and def

= .
Lemma 1.

(i) C D
I
=

C

D
(ii)

C

D
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=
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D

(iii) C
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Proof.
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D =
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=
C

D
=

C
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Proposition

G. Boisseau & P. Sobociński 5

(iii) : C = C

= C = C

(iv) : C = C

Using Lemma 1 (iii) we can immediately derive several useful properties of circuits:

Corollary 2.
(i) Resistors, inductors and capacitors are “directionless”:

R I
=

R
,

L I
=

L
,

C I
=

C
.

(ii) Reversing the direction of voltage and current sources flips polarities:

V
+–

I
= +–

-V def
= + –

V
,

I I
=

-I def
=

I
.

The impedance calculus is useful for proving circuit equivalences. The following proposition are just
a few examples of classic equivalences one would find in any textbook.

Proposition 3.

(i)
R1 R2 I

=
R3

where R3 =
R1

R2
= R1+R2

(ii)

R1

R2
I
=

R3
where R3 =

R1

R2
= R1 R1+R2 R2

(iii)

I

R
I
= +–

IR R

(iv)
+–

+–

V1

V2
I
= +–

V1
if V 1 = V 2, otherwise its semantics is /0 (the empty relation)

It is useful to contrast our treatment with the classical approach. Parts (i) and (iii) are standard
and often-used equivalences. Part (ii) is known classically, but R3 is typically given a formula like
R1R2/(R1 + R2). Classical formulas, however, do not work for all values of R1 and R2, whereas the
graphical one does. Given that it mirrors the case for resistors in series, we argue that the graphical
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Proof of (ii)

6 String Diagrammatic Electrical Circuit Theory

formula is the more natural one. Finally, in (iv), the empty case is usually excluded by classical treat-
ments. A textbook deems such a circuit degenerate and ignores that case when proving theorems. In
GAA however, the empty relation is a first-class citizen and our theorems uniformly include the empty
case as well.

Proof. Part (i) is a simple exercise in the use of the impedance calculus:

R1 R2 I
= R1 R2

I
=

R1

R2

I
=

R3
.

For part (ii), we have

R1

R2
I
=

R1

R2

I
=

R1

R2
. Now

R1

R2
=

R2
R1

R1
= R1

R1
R2

R2
= R1 R1+R2 R2

extracts the classical formula: because R1 and R2 are nonnegative, either R1 + R2 6= 0 and R1+R2 is
a scalar, or R1 = R2 = 0 and the formula is equal to 0. In both cases the result is a scalar.

Part (iii) is another simple calculation:

I

R
I
=

-I

R

I
=

R

-I
I
= R

I

I
= R

I R
I
= IR R

I
= +–

IR R

For part (iv), we can simplify using the impedance calculus as follows:

+–

+–

V1

V2
I
=

V1

V2

I
=

V1

V2

Now
V2

V1
is just V 1 if V 1 = V 2, and otherwise. In that case, the circuit evaluates to

which denotes the empty relation.

We shall see that, as a consequence of our Representation Theorem (Theorem 9), any (•, •) circuit
can be represented by an impedance box.

4 Measuring Closed Circuits

Thus far, we have kept the language of circuits ECirc and the language of GAA neatly separated by
impedance boxes (5) and the prop morphism I (·) : ECirc ! GAA. It is time to tear down the wall.

What if R1=R2=0?

=

Textbook formulas fail here because of “division by zero”



Some classical theorems

• Relativity of potentials 


• Conservation of current


• Independent measurement theorem


• Superposition theorem


• Thévenin’s theorem


• see Guillaume Boisseau’s thesis!



Conclusions 

• String diagrams can carry algebraic data that characterises applications that are relevant in the 21st century


• partial functions


• non-classical (e.g. Quantum data)


• relational structures 


• The functorial semantics methodology scales (partial theories, relational theories, first order theories)


• Compositional reasoning with string diagrams and functorial semantics is a powerful tool 


• other examples: Petri nets, signal flow graphs (with different semantics), Bayesian networks, automata, 
…


• Reasoning with string diagrams fixes the deficiencies of traditional syntax and exposes errors, implicit 
assumptions, and conceptual inadequacies 


