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Roadmap

 Lecture 1 - Functorial semantics 1 - algebraic theories

e | ecture 2 - Functorial semantics 2 - partial, relational and first-order theories

» |ecture 3 - Graphical linear algebra and applications



Compositional modelling

What is compositionality?

 Modularity - a system described as a composition of its parts
 Compositionality - a combination of:

* alanguage (syntax) for composing systems

* with operations that are compatible with the intended meaning (semantics)

» such that the translation syntax = semantics is homomorphic

Goal: no “emergent” behaviour



Modelling status quo

* models are global, monolithic and closed systems

 dynamics is obtained “a la physics” - analysing combinatorics of local interactions to obtain global behaviour via a set
of differential equaitons

* not modular: often constructed fresh for each application
e |nteraction with environment is usually oversimplified or abstracted away
e analysis in functional terms, inputs driving outputs

 but we have more data than ever before — we need good models



A problem with traditional modelling

The real world i1s not functional!

Although input/output thinking is useful in certain
situations, ... as a general methodology, input/output
descriptions are ill-founded and clash with system
Interconnection. Interconnection, as we shall see, results
In variable sharing, not in output- to-input assignment.

Jan C Willems, The Behavioral Approach to Open and Interconnected
Systems, IEEE Control Systems Magazine, 2007

In such systems composition is often relational. There are many examples.




Towards a solution

New relational algebras?

traditional syntax has functionality built in
 all operations are functional
* the main operation of term-building (substitution) is just fancy function composition

20th century extensions (essentially algebraic theories, first order theories) suffer from some of the same defects of
term-building fundamentals

some important insights have been obtained from the study of relational algebras: Peirce, Kleene, Tarski, Freyd and
Scedrov, ...

Lawvere’s insight: “functionality” is deeply associated with cartesian structure (i.e. categorical products)
* traditional syntax is thus built to operate on “classical data”. one that can be copied and discarded
This, and other algebraic structure, can often be studied as additional structure on a symmetric monoidal category

The plan for today and tomorrow: Set, Par, Rel as symmetric monoidal categories with structure



Traditional syntax

Theory of commutative monoids

(im, e}, 1 m(m(x,y),z) = m(x, m(y, z)), m(x,y) = m(y, x), m(e,x) = x })

Y 2

signature consisting of equations
operation symbols

m, e . i
{m, e} pairs of terms over some set of variables

, K implicit universal quantification

arity 2 arity O




Traditional syntax

Universal algebra basics |

* A signature is a pair 2 = (S,a) where S is a set of operation symbols together with an arity functiona:S — N

A Z-algebra is a pair (A,[-]) where A is a set (semantic domain) and [-] is a function that sends operation symbols to
functions [o] : Aalo) = A

A 2-algebra homomorphism is the obvious thing: a map between semantic domains that’s homomorphic wrt

operations: on
A" > B"
[tn] A [tn]B
Y Y
A > B
f

* Given a set of variables V, the term 2-algebra Tv is
e Tvi=V|to|ti(TV) | t2(Tv,TV) | ... | ta(Tv,..., TV) | ...
* The term 2-algebra satisfies a universal property, any v : V = A extends to a unique 2-algebra homomorphism v*: Ty = A

e compositionality!



Traditional syntax

Universal algebra basics Il

 An equationis a pair (s,t) e Tyx Tv
* An algebraic theory is a pair (2, E) where 2 is a signature and E is a set of equations.
 Example: the theory of commutative monoids
A model is a 2-algebra where every equation e € E holds (for any valuationv :V — A”)
A model homomorphism is a 2-algebra homomorphism
* The class of models of a theory is called a variety
* Theorem (Birkhoff 1935) A class of 2-algebras is a variety iff it is closed under homomorphic images, subalgebras and products.

* " Note: given that equations are required to hold under any evaluations, they are implicitly universally quantified

For more expressivity,
* essentially algebraic theories, quasi-varieties: operations are allowed to be partial, equations involve domains of definition

* first order theories: syntax contains relation symbols and formulas are more involved

 |logical operations including negation, quantifiers



Symmetric monoidal categories

A monoidal category C is a category equipped with monoidal product ®
e :CxC - C
« an object | € C called the monoidal unit
* together with coherent natural isomorphisms
* Qapc.(@®b)®c @ a® (b c)
* Pa:a®l—a
c ha:l®a—a
A symmetric monoidal category additionally has a natural isomorphism oxy : X®Y — Y®X that satisfies oxy; ovx = idxy

* Relevant examples, in all cases the cartesian product of sets gives a symmetric monoidal structure
» Set, Par, Rel
* For any set X, there are strict versions, Setx, Parx, Relx.
* In each case the objects are natural numbers, and arrows from m to n are arrows Xm — Xn in the relevant category

 strict symmetric monoidal categories with objects natural numbers and ® on objects acting as + are called props



String diagrams - a quick tutorial

 Instead of writingC : m = n, wedraw — c

* composition is plugging wires R S

 monoidal product is “stacking” boxes




Perks of the notation

e associativity is built in:

e functoriality of ® is built in:




Identities and symmetries

* |dentity arrows are drawn as wires. The monoidal identity is not drawn.

P q p q p q

 What are string diagrams exactly? Are they topological objects? Are they combinatorial objects? Are they syntactic objects?

e Yes



Equpping symmetric monoidal categories with structure

Monoidal theories

A monoidal signature [ = (G, ar, coar) where G Is a set of operations
e ar:. G — N is gives arities

 coar .G — N gives coarities

ar(y){ j y E }war(y)




String diagrams as syntax

The free prop on a monoidal signature

* A inductive term language is useful, e.g. we can use structural induction

c:(n,z) d:(z, m) c:(n,m) d:(r,z)

y :(ar(y), coar(y)) (0, 0) — :(1, 1) >< (2, 2) csd:(n, m) c®d:(n+r, m+z)

cgc’ isdrawn ’

o
™

c®c’ is drawn




From terms to string diagrams

. Consider ' & {} e }
e then (39— ®(— ® &« ))((_$— ®—)5 X)) isdrawn

* 10 go to string diagrams we need to quotient wrt the laws of symmetric strict monoidal
cats. This means that:

* erasing the dotted lines

e “only connectivity matters” D@< - D?

* This is a nice description of the free prop on a signature: in particular it is easy to see that
given a symmetric monoidal category X, an object XeX, and a valuation of eachy e I'

extends uniquely (structural induction) to a symmetric monoidal functor from string
diagrams to X



A recipe for functorial semantics

* We have notion of syntax, but what should be the semantics?
 Mere symmetric monoidal categories do not have enough structure for a meaningful general solution

* This additional structure (usually a universal property) is the magic potion that makes everything
work

* Lawvere discovered this in the 60s for universal algebra, in that case it is the notion of categorical
product.

* the “free thing” on the signature is the syntax
* functorial semantics are functors that preserve the the thing

* as we will see symmetric monoidal categories are often convenient hosts to study “the thing”
from an algebraic perspective



Aside: Lawvere and cartesian categories

 Lawvere wasn’t happy with the idea of algebraic theory as we have
introduced it in the style of universal algebra (i.e. a pair (2, E) )

* Equating the notion of theory with a particular presentation is not ideal since
different presentations can yield the same notion of algebraic structure

* [he syntactic account has an ad hoc underlying meta-theory: e.g. inductively
defined terms over a fixed countable set of variables, meta theory of

substituions, etc.



Abstract universal algebra

 Equate a theory with a category L with finite products (single sorted: with one
generating object)

 doesn’t suffer from reliance on particular presentations

e e.g. for commutative monoids, take the free category generated by {m,e},
quotient by least congruence generated by eqgs

* A (classical) model is a product preserving functor L — Set
 Model homomorphisms are natural transformations

o Simple, beautiful, easily generalisable



Finite products

 The category with free finite products on one object is FinSetor
* FinSetor has (up to equivalence) an alternative “operational” description
e objects: natural numbers, we think of m = {x1,Xo,...,Xm}
e arrows m — n: n-tuples of variables in {x1,X2,...,Xm}, €.Q.
 there is exactly one arrow 1 = 2: (X1,X1)
e there are two arrows 2 — 1: (x1) and (x2)

e composition is substitution: e.g. (x1,X1);(X2) = X1



Finite products ctd

* The category with free finite products on a signature 2 has a similar operational
description

* objects: natural numbers, we think of m = {X1,x2,...,Xm}

e arrows m — n: n-tuples of terms in Tx1.x2,...xm}, €.9. for the sig of monoids
* thereis an arrow 1 — 2: (x1,€)
* thereis an arrows?2 — 1: (m)

 composition is substitution: e.g. (x1, €); (M) = m(x1, €)

Terms demystified!

The algebra of terms and substitution is simply a convenient description of a category with free products




Algebraic structure in Set

Cartesian categories

* A symmetric monoidal category is cartesian when the monoidal product
satisfies the universal property of categorical product

* The symmetric monoidal category Set is (by definition) such an animal

* Theorem (Fox 1976). A symmetric monoidal category is cartesian iff every object can
be equipped with a commutative comonoid structure which is coherent and natural.

R B e 1D G

Y
Y
X®Y X Y —
coherent: xor = j}( ) Xey —e =
X
X

natural: X—f{j = x{; i




Lawvere with string diagrams

A single sorted Lawvere theory is a cartesian prop
e |.e. a prop where the monoidal product is the categorical product

* \We already have one concrete description of the free cartesian category
on a signhature - arrows: classical terms, composition: substitution

m —
m —

_

 WWe now have a second: string diagrams!

14

m(m(z,x),y)




A recipe

* Jurn a theory into a monoidal theory in two easy steps

. Generators: T %'y o —

* Equations: E (as string diagrams) + -t . —t {--{>C .

G—
+ m—a% :m% m —-o—e = m —e
O-_

e.g. as props, the Lawvere theory of commutative monoids is isomorphic to the monoidal theory of

commutative bialgebras!




Diagrammatic relational algebra
and appllcatlons

CATMI, Bergen, June 26-30 2023

Pawel Sobocinski, Tallinn University of Technology



Roadmap

e Lecture 1 - Functorial semantics 1
e Lecture 2 - Functorial semantics 2

» |ecture 3 - Graphical linear algebra and applications



Recap from yesterday, plan for today

* Yesterday
* traditional syntax and universal algebra
e cartesian products and Lawvere theories
e functorial semantics, models as functors to Set
 symmetric monoidal categories as carriers of algebraic structure

* Fox’s Theorem: characterising cartesianity with algebraic structure — the presence of commutative comonoid structure that is
coherent and natural

* Joday
* Replacing Set with Par and Rel
» partial theories (joint work with Di Liberti, Loregian and Nester)
* relational theories (joint work with Bonchi and Pavlovic, continued by Nester)

* first-order theories (work in progress with Bonchi, Di Giorgio and Haydon)



The recipe for functorial semantics

* find out the universal property at play
» for traditional algebraic theories, this is (binary) categorical products
* find an algebraic characterisation in symmetric monoidal categories a la Fox

» for the categorical product, this is the commutative comonoid structure that’s coherent and natural

* Then:
e syntax = string diagrams with the structure (the free thing!)
 semantics, any category with the universal property
» for traditional algebraic theories, this is usually Set, but not always
* models = functors that preserve the structure

* homomorphisms = the canonical notion of natural transformation



The symmetric monoidal category Par

* Objects are sets

e arrows are partial functions
 monoidal product is cartesian product
e symmetries are inherited from Set

* there is a natural poset enrichment

 if C has finite limits, there is a symmetric monoidal category Par(C)
e objects are those of C
e arrows from C to D are spans C <« C’ — D (up to iso) where the left leg is mono
e composition is by pullback

 monoidal product is pointwise product

 NB: The monoidal product in Par is not the categorical product!



Algebraic structure in Par

Discrete cartesian restriction categories

* Partial theories: we want to replace Set with Par as the universe of models

 Lawvere identified cartesian categories as the categorical structure of
interest for algebraic theories

e For partial theories, the corresponding categorical structure Is given by
discrete cartesian restriction categories (dcr categories)

 Paris a DCR category. If C has finite limits, Par(C) is a DCR category.

* |Instead of delving into the details, we can characterise them using a result
similar to Fox’s theorem



“Fox’s theorem” for DCR categories

* Theorem. A DCR category is a symmetric monoidal category where
every object is equipped with a coherent partial Frobenius algebra
structure, such that the comultiplication is natural.

-t -0 —-4
RO
Feao-y

%

.
A = AL




Consequences

* The free DCR category on an object is Par(For)

Given a signature 2, we obtain a syntax for equations!

* Syntax = concrete description of the free DCR category on 2 in terms of
string diagrams with partial Frobenius structure

* A presentation is then, as usual, the pair of a signature and equations
e |ts partial Lawvere theory is the induced DCR prop

 This is now a Lawvere-style functorial semantics for partial theories



Functorial semantics for partial theories

 We have
* a notion of syntax - string diagrams with the additional algebraic structure
* a notion of semantics, any DCRC, but Par is a canonical choice

* a notion of model, a functor syntax—semantics that preserves the DCRC
structure

* a notion of model homomorphism given by the canonical notion natural
transformations of such functors



Examples

2-sorted
directed graphs A S O A n O A Js—e — A —oe Adil—e —A —e
reflexive graphs O id A O Hid—e = o0 —e O qidHHs}Fo = O — o0 = O HidHt- O
A t
categories } A }—o — } °
A S

A A -
A A id _ _

A } } A— A—{ }A—A—A—A—{ }A

A A t 1d

+ monoidal categories, cartesian restriction categories, DCR categories, cartesian categories, cartesian closed categories, ...



The symmetric monoidal category Rel

e oObjects are sets
e arrows from X to Y are relations RCXxY

« composition is relational composition: given RCXxY and ScYxZ, the composition R;S = { (x,2) | 3 y. (X,y)eR A (y,2)eS}
e poset enrichment: 2-cells are inclusions of relations

« monoidal product is cartesian product on objects. On arrows, given RCXxY and R’cX’xY’, ReR’ = { (xx’,yy’) | xRy A x'R’y’}

e given a regular category C, there is a monoidal category Rel(C) with

e objects are those of C

e arrows are jointly mono spans X < R — Y, composition is pullback followed by factorisation

 monoidal product is given by pointwise product

* NB. the monoidal product in Rel is not the categorical product



Algebraic structure in Rel |

Cartesian bicategories (of relations)

e every object has a commutative comonoid structure
e with right adjoints
e s.t. every morphism is a weak comonoid homomorphism

 and the comonoid and monoid structures together form a special
Frobenius monoid

e cartesian bicategories are a general, category theoretic algebraic
approach to relations (cf. allegories)



Unpacking this data, algebraically

(A®F) (A)
5 e oS =
I ol X 2 e

I (U;p> .}7 (g)

(unit is right adjoint to counit) (multiplication is right adjoint to comultiplication)
(o) r= (MC)
oo = D o
(CU) (C M)
_ < oo - < >

Convolution is a meet semilattice




The Frobenius law and lax naturality

(special Frobenius)

> =
5 22

(all relations are weak comonoid homomorphisms)

(L1)

(L2)

e < ek

=13




Functorial semantics for relation theories

e We have

* a notion of syntax - string diagrams with the additional algebraic structure

* a notion of semantics - any cartesian bicategory of relations, but Rel is the
canonical choice

* a notion of model - functors syntax—semantics that preserve the cartesian
bicategory structure

e a notion of homomorphism, given by the canonical notion of natural
transformations of such functors



A curious property of Rel

 There is a “De Morgan” version or Rel as a monoidal category.

* From now, let us call the usual one Rel+. The other we will call Rel-.

 Both Rel* and Rel- have the same objects, and monoidal product on objects is cartesian product. But:
* Rel- composition works as follows: given RCXxY and SCYxZ,
e R;S={(x,2)| vy. xRy v ySz}
* what is the identity?
 On arrows, given R € XxY and R’ € X’xY’,
« ReR’ ={(xx",yy’) | xRy v X’'R’y’}

» what are the symmetries?

 Rel+ and Rel- are isomorphic as symmetric monoidal categories



The linear bicategory Rel

* there are two compositions and two tensors

 and linear adjunctions

e satisfying linear distributivity
(r-distr)

<

(1-distr)
— (o o;str) __ (ce-str) _
0 o
| g oHal Sy Tl
L) Ay o o8

(O._id) E
<




Cartesian bicategories + linear bicategories = first order bicategories

... a totally algebraic approach to first-order logic and first order theories

C

C :::—C|—o| R |o—|:>—| | > | C C | |

o OEDSEE SO H

One can prove completeness (in Godel’s sense, in the style of Henkin) in this theory




First order theories, algebraically

sans variables, quantifiers...

* natural encodings of various flavours of relational algebras

o diagrammatic syntax closely related to 19th century string diagrams: Peirce’s
existential graphs

* a variable free treatment of first order logic, with a sound and complete
axiomatisation

* easy encoding of Quine’s predicate functor logic

* a functorial semantics story, in the style we have seen so far



Summary

 Lawvere identified a universal property - cartesian products - which via Fox’s theorem gives you an
algebraic structure

* Such algebraic structures can be studied as additional structure on symmetric monoidal categories

* Once you know the universal property <-> algebraic structure, the entire functorial semantics story
falls out, we have:

* a notion of syntax - string diagrams with the additional algebraic data built in

* a notion of semantic universe - any category with the right structure, but typically there is a
“canonical” one - Set, Par, or Rel in the examples

* a notion of model - a functor syntax—semantics that preserves the structure

* a notion of homomorphism - natural transformations
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Recap and roadmap

* |n the first two lectures we generalised Lawvere’s functorial semantics to
* partial algebraic theories
* relational theories
 first-order theories

* In each case string diagrams in symmetric monoidal categories are useful as
carriers of the relevant categorical structure, seen algebraically

* In particular, they give us a nice syntactic calculus

* Today. Two relational theories: graphical linear algebra and graphical affine algebra



Two symmetric monoidal categories

e Qur task is to axiomatise the following:

e Given a field k, LinRelx is the smc where
e objects are natural numbers
e arrows m to n are linear relations m — n

e |.e.those relations R ¢ km+n that are also k-linear subspaces

e (ordinary) relational composition of linear relations is a linear relation

e Similarly, AffRelx is the smc where arrows are affine relations

e Given a field k, an affine relation m—n is a relation R € kmxkn which is either empty, or s.t. there is a linear relation C and a
vector (a,b) s.t. R=(a,b) + C

* relational composition of affine relations is an affine relation



Starting point: the theory of bialgebras

e TC > o

e
- T o

e -

Let B be the free prop on this data - we know that it is isomorphic

to the Lawvere theory of commutative monoids



First glimpse of linear algebra

* let Mat be the prop where arrows m—n are nxm matrices of natural numbers

* e.g. (0 5):2—1 (135>:1%2 (é 121)22%2
 composition is matrix multiplication

 monoidal product is direct sum

A 0
Al@AZ:( 01 Az)

* symmetries are permutation matrices

e |t’s also true that B = Mat



Where do the naturals come from?

* A syntactic sugar:

— O
N

+1 1s "add one path”

—— k+1

—(

* For similar reasons, the following are isomorphic

2)

=y,
 monoidal theory of Hopf algebra H 4<
* Lawvere theory of abelian groups 3_

* The prop of matrices over the integers




The relational theory of linear relations

Interacting Hopf algebras aka graphical linear algebra

Xo— = _p— —( = —OC

Frobenius

(addinQ) (adding-op)

Hopf | | Hopf

Black comonoid Black monoid
(copying) (copying-op)

This is the relational theory of linear relations. Moreover:

—o - —&C Frobemus XO0— - e

= ">
D l— —




IH = LinRelq

Where do the generators go?

Linear algebra = how these four relations and their opposites interact




Where do the rationals come from?

multiplication:

— ) (aHH )G = {p){r)r{a}(s_
=  —{mp)sa}—
addition:

DG




But what about division by 0?

* It's ok, nothing blows up

Ho- - —e o—

0

_O‘_

//'(x, 2X)

”
”
-

* two ways of interpreting 0/0

—(0 %)~ = —0 o—

00}~ = —o o—




An extended number system

e LinRelq[1,1]
e projective arithmetic with two additional elements

e the unique 0-dimensional subspace L = {(0,0) }

 The unique 2-dimensional subspace T ={(x,y) | x,y € Q}

/s

0

/s

p/q

(sp+an/gs




Some linear algebraic concepts in the graphical syntax

* transpose

* combine colour and mirror image symmetries

e kernel
e cokernel
* Image

e coimage

coe W gy

Fact. Given a linear subspace R:0->k in
LinRel, its orthogonal complement R+ is its

colour inverted diagram

D o
(3 )1ee=0 ()

Corollary. The “fundamental theorem of linear
algebra” has no mathematical content

kerA = im(A")+
kerAT = im(A)*



Factorisations

e every diagram can be factorised as a span or cospan of matrices

* two different ways to think of linear spaces

solutions of a list of linear combinations
homogeneous equations of basis vectors
V;x;y¥0‘ o :
X+y=0 2y-z=0 2y-z=0 -f a[t, -1 0] b[o 1, 2] a1, -1, 0]+b[0,1,2]

—@

e e +<- o €

Cospans Spans



Linear algebra with string diagrams

* the syntax exhibits the beautiful symmetries of linear algebra

e given that the theory is sound and complete, all standards results can be
proved with diagrammatic reasoning

 linear algebra done righter?

e next, affine relations



Diagrammatic syntax for affine relations




Equational characterisation

Together with the equations of IH, this is the relational theory of affine relations. Moreover:

IHA = AffRelq




Case study

Non-passive electrical circuits

e work with the diagrammatic language for AffRelrix
* introduce a syntactic prop of electrical circuits
* develop diagrammatic reasoning technigues

* the Impedance calculus

* prove classical “theorems” of electrical circuit theory



The prop of electrical circuits

 ECirc, free on the following signature

/

R
* resistor ~WW-

V
e voltage source _@_

e current source _@_

L
SYYYL

C

e capacitor 4"7

e nductor

R % | L C
S S R
\ /

\

RLCER. . VIER

o1




Compositional semantics

7 : ECirc = GAA
(1) =2




Impedance calculus

» Extend the signature of ECirc with impedance boxes

--------

1
<
IS

0

l

I

I

I

I

0

0

l

-!
1A

l I
I
— @ O—E_7 2 S —0 '—E—i—a -
R 7 v L 7 v C 7
W = ——{RrR)>r+— m = ——{+ - =
| 0

--------




Impedance box lemma

——————————————————

Ml 7 ] S
o 1t £ o
(1i1) = A




Proposition

. R1 R2 4 RS R
1) -W—w- = -~ Where | R3)— = —« -
R1
Wy 7 RS R1
(1) — . ¢—= - Where —{R3) < —
- W—
I
&) IR
) S R
(111) 4 - =
W

—O— s

V1
1v) — o  ¢— = -@— if V1 = V2, otherwise 1ts semantics 1s @ (the empty relation)




Proof of (i

What if R1=R2=07?
{ D— = —. O_

Textbook formulas fail here because of “division by zero”



Some classical theorems

» Relativity of potentials

* Conservation of current

* |ndependent measurement theorem
e Superposition theorem

* Thévenin’s theorem

e see Guillaume Boisseau’s thesis!



Conclusions

o String diagrams can carry algebraic data that characterises applications that are relevant in the 21st century

e partial functions
* non-classical (e.g. Quantum data)

e relational structures

* The functorial semantics methodology scales (partial theories, relational theories, first order theories)

 Compositional reasoning with string diagrams and functorial semantics is a powerful tool

» other examples: Petri nets, signal flow graphs (with different semantics), Bayesian networks, automata,

 Reasoning with string diagrams fixes the deficiencies of traditional syntax and exposes errors, implicit
assumptions, and conceptual inadequacies



