Post-groups and post-Lie algebras in differential geometry

Dominique Manchon CNRS-Université Clermont Auvergne

> CATMI, Lie-Størmer center, Bergen, June 25-30th 2023

< □ > < 同 > < 回 > < 回 > < 回

Outline Affine connections

Post-Lie approach to connections

Outline

Affine connections Pre-Lie and post-Lie Post-Lie approach to connections

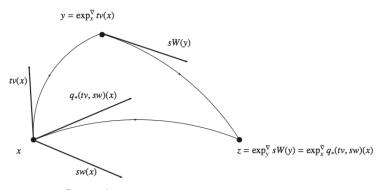
<ロト < 四ト < 三ト < 三ト

Based on joint works with

- Mahdi Jasim Hasan Al-Kaabi (Mustansiriyah University, Baghdad, Iraq),
- Kurusch Ebrahimi-Fard (NTNU, Trondheim),
- Hans Z. Munthe-Kaas (UiB, Bergen),

(arXiv:2205.04381 and 2306.08284)

• Yuanyuan Zhang (Henan University, China).



GAVRILOV'S DOUBLE EXPONENTIAL

イロト イロト イヨト イヨト

Э.

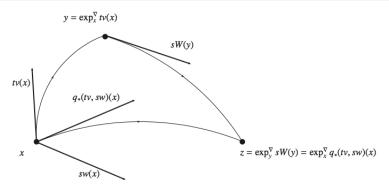
 $y = \exp_{x}^{\nabla} tv(x)$ tv(x) $q_{*}(tv, sw)(x)$ $z = \exp_{y}^{\nabla} sW(y) = \exp_{x}^{\nabla} q_{*}(tv, sw)(x)$

GAVRILOV'S DOUBLE EXPONENTIAL

$$q_*(t\nu, sw) = \beta^{-1} \Big(\operatorname{BCH} \Big\{ \beta(t\nu), \beta(s\lambda(t\nu, w)) \Big\} \Big)$$

イロト イロト イヨト イヨト

Э.



GAVRILOV'S DOUBLE EXPONENTIAL

$$q_*(tv, sw) = \beta^{-1} \Big(\operatorname{BCH} \Big\{ \beta(tv), \beta(s\lambda(tv, w)) \Big\} \Big)$$

is a **tensorial quantity**. Its evaluation at $x \in \mathcal{M}$ only depends on v(x) and w(x).

Affine connections

• Let
$${\mathcal M}$$
 be a ${\mathcal C}^\infty$ manifold, let

$$\mathcal{XM} = \{ \text{vector fields on } \mathcal{M} \}.$$

• ∇ affine connection \Rightarrow covariant derivative operator

 $abla_{fX} Y = f \nabla_X Y, \qquad \nabla_X (fY) = f \nabla_X Y + (X.f) Y$

for any $f \in C^{\infty}(\mathcal{M})$ and $X, Y \in \mathcal{XM}$.

Notation:

$$X \triangleright Y := \nabla_X Y.$$

イロト イポト イヨト イヨト

Affine connections

• Let
$${\mathcal M}$$
 be a ${\mathcal C}^\infty$ manifold, let

$$\mathcal{XM} = \{ \text{vector fields on } \mathcal{M} \}.$$

• ∇ affine connection \Rightarrow covariant derivative operator

 $abla_{fX} Y = f \nabla_X Y, \qquad \nabla_X (fY) = f \nabla_X Y + (X.f) Y$

for any $f \in C^{\infty}(\mathcal{M})$ and $X, Y \in \mathcal{XM}$.

Notation:

$$X \triangleright Y := \nabla_X Y.$$

Lie-Jacobi bracket on XM:

$$[X, Y]f := X.(Y.f) - Y.(X.f).$$

イロト 不得 トイヨト イヨト

(XM, ▷, [-, -]) is a framed Lie algebra (terminology due to A. V. Gavrilov).

イロト イポト イヨト イヨト

- (XM, ▷, [-, -]) is a framed Lie algebra (terminology due to A. V. Gavrilov).
- It is also a $C^{\infty}(\mathcal{M})$ -module.

イロト イポト イヨト イヨト

- (XM, ▷, [-, -]) is a framed Lie algebra (terminology due to A. V. Gavrilov).
- It is also a $C^{\infty}(\mathcal{M})$ -module.
- No compatibility between ▷ and [-,-] in the definition of a framed Lie algebra.

イロト イポト イヨト イヨト

- (XM, ▷, [-, -]) is a framed Lie algebra (terminology due to A. V. Gavrilov).
- It is also a $C^{\infty}(\mathcal{M})$ -module.
- No compatibility between ▷ and [-,-] in the definition of a framed Lie algebra.
- Two rather involved relations between \triangleright and [-,-] in \mathcal{XM} : the **Bianchi identities**.

ヘロト 人間 とくほとくほとう

• Torsion:

$$t(X,Y) := X \triangleright Y - Y \triangleright X - [X,Y].$$

• Curvature:

$$r(X,Y)(Z) = R(X,Y,Z) := X \triangleright (Y \triangleright Z) - Y \triangleright (X \triangleright Z) - [X,Y] \triangleright Z.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Э.

• Torsion:

$$t(X,Y) := X \triangleright Y - Y \triangleright X - [X,Y].$$

Ourvature:

$$r(X,Y)(Z) = R(X,Y,Z) := X \triangleright (Y \triangleright Z) - Y \triangleright (X \triangleright Z) - [X,Y] \triangleright Z.$$

- The torsion is $C^{\infty}(\mathcal{M})$ -linear w.r.t. both arguments,
- The curvature in $C^{\infty}(\mathcal{M})$ -linear w.r.t. its three arguments.

Torsion:

$$t(X,Y) := X \triangleright Y - Y \triangleright X - [X,Y].$$

Ourvature:

$$r(X,Y)(Z) = R(X,Y,Z) := X \triangleright (Y \triangleright Z) - Y \triangleright (X \triangleright Z) - [X,Y] \triangleright Z.$$

- The torsion is $C^{\infty}(\mathcal{M})$ -linear w.r.t. both arguments,
- The curvature in $C^{\infty}(\mathcal{M})$ -linear w.r.t. its three arguments.
- t and R are the building blocks of the special polynomials, like

$$R((X \triangleright R)(Y,Z,T), U, t(V, R(W,A,B)))$$

Bianchi identities

• First Bianchi identity:

$$\oint_{XYZ} R(X, Y, Z) = \oint_{XYZ} (X \triangleright t)(Y, Z) - \oint_{XYZ} t(X, t(Y, Z))$$

with $(X \triangleright t)(Y, Z) := X \triangleright t(Y, Z) - t(X \triangleright Y, Z) - t(Y, X \triangleright Z),$

Э.

Bianchi identities

• First Bianchi identity:

$$\oint_{XYZ} R(X, Y, Z) = \oint_{XYZ} (X \triangleright t)(Y, Z) - \oint_{XYZ} t(X, t(Y, Z))$$

with $(X \triangleright t)(Y, Z) := X \triangleright t(Y, Z) - t(X \triangleright Y, Z) - t(Y, X \triangleright Z),$

• Second Bianchi identity:

$$\oint_{XYZ} (X \triangleright R)(Y, Z, W) = \oint_{XYZ} R(X, t(Y, Z), W)$$

with $(X \triangleright R)(Y,Z,W) := X \triangleright R(Y,Z,W) - R(X \triangleright Y,Z,W) - R(Y,X \triangleright W,Z) - R(Y,Z,X \triangleright W).$

イロト イポト イヨト イヨト

The flat torsion-free case (example: $\mathcal{M} = \mathbb{R}^n$)

• If t(X, Y) = 0 and r(X, Y) = 0 for any $X, Y \in XM$, the left pre-Lie identity holds:

$$X \triangleright (Y \triangleright Z) - (X \triangleright Y) \triangleright Z = Y \triangleright (X \triangleright Z) - (Y \triangleright X) \triangleright Z$$

(Vinberg 1963, Gerstenhaber 1963, Cayley 1857).

The flat constant torsion case (Examples: homogeneous spaces)

- We suppose
 - Flatness condition: r(X, Y) = 0 for any $X, Y \in XM$,
 - Constant torsion condition:

 $(X \triangleright t)(Y,Z) = 0$ for any three vector fields X, Y, Z.

The flat constant torsion case (Examples: homogeneous spaces)

- We suppose
 - Flatness condition: r(X, Y) = 0 for any $X, Y \in XM$,
 - Constant torsion condition:

 $(X \triangleright t)(Y,Z) = 0$ for any three vector fields X, Y, Z.

 (XM, ▷, [-, -]) is a post-Lie algebra (B. Vallette 2007) and the differential operators (DM, ▷, ·) form a D-algebra (H. Z. Munthe-Kaas and W. Wright 2008).

The post-Lie algebra axioms

•
$$a \triangleright [b, c] = [a \triangleright b, c] + [b, a \triangleright c],$$

•
$$[a,b] \triangleright c = a \triangleright (b \triangleright c) - (a \triangleright b) \triangleright c - b \triangleright (a \triangleright c) + (b \triangleright a) \triangleright c.$$

<ロト < 四ト < 三ト < 三ト

The post-Lie algebra axioms

•
$$a \triangleright [b, c] = [a \triangleright b, c] + [b, a \triangleright c],$$

•
$$[a,b] \triangleright c = a \triangleright (b \triangleright c) - (a \triangleright b) \triangleright c - b \triangleright (a \triangleright c) + (b \triangleright a) \triangleright c.$$

• A post-Lie algebra with vanishing bracket is a pre-Lie algebra.

Take-home message

The post-Lie formalism is still relevant for any affine connection on \mathcal{M} .

<ロト < 四ト < 三ト < 三ト

• Let $\widetilde{\mathfrak{g}}$ be the free \mathbb{R} -Lie algebra over $\mathcal{V} = \mathcal{XM}$.

<ロト < 四ト < 三ト < 三ト

- Let $\widetilde{\mathfrak{g}}$ be the free \mathbb{R} -Lie algebra over $\mathcal{V} = \mathcal{X}\mathcal{M}$.
- Let \mathfrak{g} be the free $C^{\infty}(\mathcal{M})$ -Lie algebra over \mathcal{V} . In other words, the $C^{\infty}(\mathcal{M})$ -module of sections of the free Lie algebra vector bundle $\operatorname{Lie}(T\mathcal{M})$.

- Let $\widetilde{\mathfrak{g}}$ be the free \mathbb{R} -Lie algebra over $\mathcal{V} = \mathcal{X}\mathcal{M}$.
- Let \mathfrak{g} be the free $C^{\infty}(\mathcal{M})$ -Lie algebra over \mathcal{V} . In other words, the $C^{\infty}(\mathcal{M})$ -module of sections of the free Lie algebra vector bundle $\operatorname{Lie}(T\mathcal{M})$.
- The connection product ▷ can be extended from 𝒱 to g̃, and also to g, by asking for both post-Lie axioms.

< ロ > < 同 > < 回 > < 回 > < 回 >

- Let $\widetilde{\mathfrak{g}}$ be the free \mathbb{R} -Lie algebra over $\mathcal{V} = \mathcal{X}\mathcal{M}$.
- Let \mathfrak{g} be the free $C^{\infty}(\mathcal{M})$ -Lie algebra over \mathcal{V} . In other words, the $C^{\infty}(\mathcal{M})$ -module of sections of the free Lie algebra vector bundle $\operatorname{Lie}(T\mathcal{M})$.
- The connection product ▷ can be extended from V to g, and also to g, by asking for both post-Lie axioms.

• Beware:
$$[-,-] \neq [-,-]!$$

< ロ > < 同 > < 回 > < 回 > < 回 >

- Let $\widetilde{\mathfrak{g}}$ be the free \mathbb{R} -Lie algebra over $\mathcal{V} = \mathcal{X}\mathcal{M}$.
- Let \mathfrak{g} be the free $C^{\infty}(\mathcal{M})$ -Lie algebra over \mathcal{V} . In other words, the $C^{\infty}(\mathcal{M})$ -module of sections of the free Lie algebra vector bundle $\operatorname{Lie}(T\mathcal{M})$.
- The connection product ▷ can be extended from V to g, and also to g, by asking for both post-Lie axioms.
- Beware: $[-,-] \neq [-,-]!$
- Both $\tilde{\mathfrak{g}}$ and \mathfrak{g} are post-Lie algebras. Extending the scalars to $s\mathbb{R}[s]$ makes them positively graded post-Lie algebras.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Grossman-Larson bracket

In any post-Lie algebra g,

$$\llbracket X, Y \rrbracket =: \llbracket X, Y \rrbracket + X \rhd Y - Y \rhd X$$

defines a Lie bracket. It is **not** $C^{\infty}(\mathcal{M})$ -linear, contrarily to [-,-].

The Grossman-Larson bracket

In any post-Lie algebra g,

$$\llbracket X, Y \rrbracket =: \llbracket X, Y \rrbracket + X \rhd Y - Y \rhd X$$

defines a Lie bracket. It is **not** $C^{\infty}(\mathcal{M})$ -linear, contrarily to [-,-].

Opposite post-Lie algebra $\mathfrak{g}^{\mathsf{op}} := (\mathfrak{g}, -[-, -], \blacktriangleright)$ with

$$X \triangleright Y := X \triangleright Y + [X, Y],$$

sharing the same Grossman-Larson bracket.

Torsion and curvature revisited

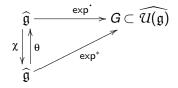
For any $X, Y, Z \in \mathcal{V} = \mathcal{XM}$,

•
$$t(X, Y) = [[X, Y]] - [X, Y] - [X, Y],$$

•
$$R(X,Y,Z) = (\llbracket X,Y \rrbracket - \llbracket X,Y \rrbracket) \triangleright Z.$$

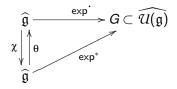
・ロト ・聞 ト ・ ヨト ・ ヨト・

Post-Lie Magnus expansion



イロト イポト イヨト イヨト

Post-Lie Magnus expansion



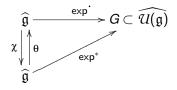
• Post-Lie Magnus expansion $\chi: \widehat{\mathfrak{g}} \to \widehat{\mathfrak{g}}$

$$\chi(X) := \log^* \exp^{\cdot}(X).$$

Inverse post-Lie Magnus expansion:

$$\theta(X) := \chi^{-1}(X) = \log \exp^*(X).$$

Post-Lie Magnus expansion



• Post-Lie Magnus expansion $\chi: \widehat{\mathfrak{g}} \to \widehat{\mathfrak{g}}$

$$\chi(X) := \log^* \exp^{\cdot}(X).$$

Inverse post-Lie Magnus expansion:

$$\theta(X) := \chi^{-1}(X) = \log^{-1} \exp^{*}(X).$$
• $\chi(X) =$

$$X - \frac{1}{2}X \triangleright X + \frac{1}{2}X \triangleright (X \triangleright X) + \frac{1}{4}(X \triangleright X) \triangleright X + \frac{1}{2}[X \triangleright X, X] + \cdots$$
• $\theta(X) = X + \frac{1}{2}X \triangleright X + \frac{1}{6}X \triangleright (X \triangleright X) + \frac{1}{2}[X, X \triangleright X] + \cdots$

Gavrilov's K-map

- V vector space, $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ its tensor algebra,
- ▷: V × V → V bilinear binary product (no other property assumed).

イロト イポト イヨト イヨト

Gavrilov's K-map

- V vector space, $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ its tensor algebra,
- ▷: V × V → V bilinear binary product (no other property assumed).
- $K: T(V) \to T(V)$ recursively defined by K(1) = 1, $K_{|V} = Id_V$ and

$$\mathcal{K}(x_1 \otimes \cdots \otimes x_n) = x_1 \otimes \mathcal{K}(x_2 \otimes \cdots \otimes x_n)$$
$$-\sum_{j=2}^n \mathcal{K}(x_2 \otimes \cdots \otimes (x_1 \rhd x_j) \otimes \cdots \otimes x_n).$$

イロト イポト イヨト イヨト

Gavrilov's K-map

- V vector space, $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ its tensor algebra,
- ▷: V × V → V bilinear binary product (no other property assumed).
- $K: T(V) \to T(V)$ recursively defined by K(1) = 1, $K_{|V} = Id_V$ and

$$\mathcal{K}(x_1 \otimes \cdots \otimes x_n) = x_1 \otimes \mathcal{K}(x_2 \otimes \cdots \otimes x_n)$$
$$-\sum_{j=2}^n \mathcal{K}(x_2 \otimes \cdots \otimes (x_1 \triangleright x_j) \otimes \cdots \otimes x_n).$$

•
$$K(x \otimes y) = x \otimes y - x \triangleright y$$
,

イロト イポト イヨト イヨト

Gavrilov's K-map

- *V* vector space, $T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$ its tensor algebra,
- ▷: V × V → V bilinear binary product (no other property assumed).
- $K: T(V) \to T(V)$ recursively defined by K(1) = 1, $K_{|V} = Id_V$ and

$$K(x_1 \otimes \cdots \otimes x_n) = x_1 \otimes K(x_2 \otimes \cdots \otimes x_n)$$
$$-\sum_{j=2}^n K(x_2 \otimes \cdots \otimes (x_1 \triangleright x_j) \otimes \cdots \otimes x_n).$$

•
$$K(x \otimes y) = x \otimes y - x \triangleright y$$
,
• $K(x \otimes y \otimes z) = x \otimes y \otimes z - x \otimes (y \triangleright z) - (x \triangleright y) \otimes z - y \otimes (x \triangleright z) + (x \triangleright y) \triangleright z + y \triangleright (x \triangleright z)$.

イロト イポト イヨト イヨト

•
$$\mathcal{K}^{-1}(x_1 \otimes \cdots \otimes x_n) = \sum_{\pi \vdash \{1, \dots, n\}} (x_1 \otimes \cdots \otimes x_n)^{\pi}$$

Dominique Manchon CNRS-Université Clermont Auvergne Post-groups and post-Lie algebras in differential geometry

•
$$\mathcal{K}^{-1}(x_1 \otimes \cdots \otimes x_n) = \sum_{\pi \vdash \{1, \dots, n\}} (x_1 \otimes \cdots \otimes x_n)^{\pi}$$
 with

$$(x_1\otimes\cdots\otimes x_n)^\pi:=y_{B_1}\otimes\cdots\otimes y_{B_{|\pi|}}$$
 where

•
$$\mathcal{K}^{-1}(x_1 \otimes \cdots \otimes x_n) = \sum_{\pi \vdash \{1, \dots, n\}} (x_1 \otimes \cdots \otimes x_n)^{\pi}$$
 with

$$(x_1\otimes\cdots\otimes x_n)^\pi:=y_{B_1}\otimes\cdots\otimes y_{B_{|\pi|}}$$
 where

$$y_{\mathcal{B}} := y_{b_1} \triangleright \left(y_{b_2} \triangleright \left(\cdots \triangleright \left(y_{b_{\ell-1}} \triangleright y_{b_{\ell}} \right) \dots \right) \right)$$

if the block $B \subset \{1, ..., n\}$ is of cardinality ℓ , and where the blocks are ordered wrt their maximum.

イロト イポト イヨト イヨト

•
$$\mathcal{K}^{-1}(x_1 \otimes \cdots \otimes x_n) = \sum_{\pi \vdash \{1, \dots, n\}} (x_1 \otimes \cdots \otimes x_n)^{\pi}$$
 with

$$(x_1 \otimes \cdots \otimes x_n)^{\pi} := y_{B_1} \otimes \cdots \otimes y_{B_{|\pi|}}$$
 where

$$y_B := y_{b_1} \triangleright \left(y_{b_2} \triangleright \left(\cdots \triangleright \left(y_{b_{\ell-1}} \triangleright y_{b_{\ell}} \right) \dots \right) \right)$$

if the block $B \subset \{1, ..., n\}$ is of cardinality ℓ , and where the blocks are ordered wrt their maximum.

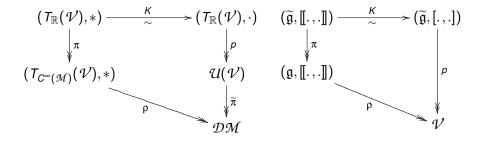
•
$$\mathcal{K}^{-1}(x \otimes y) = x \otimes y + x \triangleright y$$
,

•
$$\mathcal{K}^{-1}(x \otimes y \otimes z) =$$

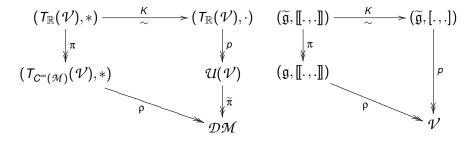
 $x \otimes y \otimes z + (x \rhd y) \otimes z + y \otimes (x \rhd z) + x \rhd (y \otimes z) + x \rhd (y \rhd z).$

イロト イポト イヨト イヨト

Two commuting diagrams

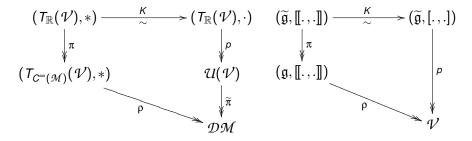


Two commuting diagrams



Here ρ stands for the **higher-order covariant derivative map**.

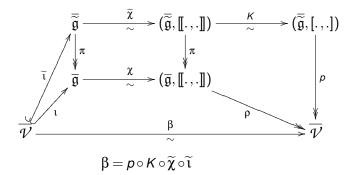
Two commuting diagrams



Here ρ stands for the **higher-order covariant derivative map**.

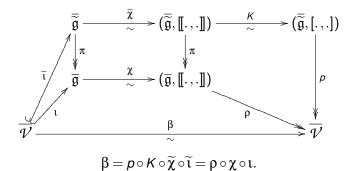
K is a **Hopf algebra isomorphism** (A. V. Gavrilov, 2012).

Gavrilov's β map in terms of post-Lie Magnus expansion



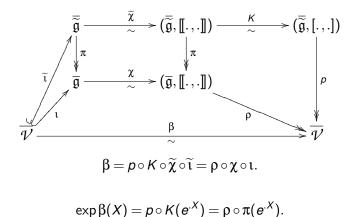
(日) (同) (日) (日) (日)

Gavrilov's β map in terms of post-Lie Magnus expansion



(日) (同) (日) (日) (日)

Gavrilov's β map in terms of post-Lie Magnus expansion



< ロ > < 同 > < 回 > < 回 > < 回 >

The universal enveloping algebra of a post-Lie algebra is a D-algebra, and more precisely a **post-Hopf algebra**

(日) (同) (日) (日) (日)

The universal enveloping algebra of a post-Lie algebra is a D-algebra, and more precisely a **post-Hopf algebra**, namely a (cocommutative) Hopf algebra $(H, ., \Delta, u, \varepsilon, S)$ together with a linear map $\triangleright : H \otimes H \rightarrow H$ such that

•
$$u \rhd (v.w) = \sum_{(u)} (u_1 \rhd v) . (u_2 \rhd w),$$

• $u \rhd (v \rhd w) = (u * v) \rhd w$

イロト イポト イヨト イヨト

The universal enveloping algebra of a post-Lie algebra is a D-algebra, and more precisely a **post-Hopf algebra**, namely a (cocommutative) Hopf algebra $(H, ., \Delta, u, \varepsilon, S)$ together with a linear map $\triangleright : H \otimes H \rightarrow H$ such that

•
$$u \triangleright (v.w) = \sum_{(u)} (u_1 \triangleright v) . (u_2 \triangleright w)$$

• $u \triangleright (v \triangleright w) = (u * v) \triangleright w$
with $u * v := \sum_{(u)} u_1 . (u_2 \triangleright v)$,

The universal enveloping algebra of a post-Lie algebra is a D-algebra, and more precisely a **post-Hopf algebra**, namely a (cocommutative) Hopf algebra $(H, ., \Delta, u, \varepsilon, S)$ together with a linear map $\triangleright : H \otimes H \rightarrow H$ such that

•
$$u \triangleright (v.w) = \sum_{(u)} (u_1 \triangleright v).(u_2 \triangleright w),$$

•
$$u \triangleright (v \triangleright w) = (u * v) \triangleright w$$

with $u * v := \sum_{(u)} u_1 \cdot (u_2 \triangleright v)$,

The map L[▷]: H → L(H, H) defined by L[▷]_u := u ▷ − admits an inverse β[▷] for the convolution product.

The following facts hold:

- The tuple H
 := (H, *, Δ, u, ε, S_{*}) is a Hopf algebra with antipode given by S_{*}(u) := Σ_(u) β[▷]_{u1} (S_.(u₂)),
- The product . can be recovered from * by

$$u.v = \sum_{(u)} u_1 * (S_*(u_2) \triangleright v)).$$

A. V. Gavrilov's initial value problem

For any x, y in a post-Lie algebra \mathfrak{g} , the quantity

$$\lambda(tx,y) := S_*(\exp^{-}(tx)) \triangleright y = \exp^*(-\chi(tx)) \triangleright y$$

is the solution of the differential equation

$$\dot{\lambda}(tx,y) = -\lambda(tx,x) \triangleright \lambda(tx,y)$$

with initial value $\lambda(0, y) = y$.

A. V. Gavrilov's initial value problem

For any x, y in a post-Lie algebra \mathfrak{g} , the quantity

$$\lambda(tx,y) := S_*(\exp^{-}(tx)) \triangleright y = \exp^{+}(-\chi(tx)) \triangleright y$$

is the solution of the differential equation

$$\dot{\lambda}(tx,y) = -\lambda(tx,x) \triangleright \lambda(tx,y)$$

with initial value $\lambda(0, y) = y$. In particular, $\alpha(tx) := \lambda(tx, x)$ is the solution of the differential equation

$$\dot{\alpha}(tx) = -\alpha(tx) \triangleright \alpha(tx)$$

with initial value $\alpha(0x) = x$.

$\lambda(tx, y)$ is the parallel transport at time *t* of *y* in the direction of *x*.

Dominique Manchon CNRS-Université Clermont Auvergne Post-groups and post-Lie algebras in differential geometry

イロト イポト イヨト イヨト

 $\lambda(tx, y)$ is the **parallel transport at time** *t* of *y* in the direction of *x*. This object is purely magmatic:

$$\lambda(tx,y) = y - tx \triangleright y + \frac{t^2}{2} (x \triangleright (x \triangleright y) + (x \triangleright x) \triangleright y)$$
$$-\frac{t^3}{6} (x \triangleright (x \triangleright (x \triangleright y)) + x \triangleright ((x \triangleright x) \triangleright y) + (x \triangleright (x \triangleright x)) \triangleright y)$$
$$+ ((x \triangleright x) \triangleright x) \triangleright y + 2(x \triangleright x) \triangleright (x \triangleright y)) + \cdots$$

This matches the differential geometric notion when $x, y \in X\mathcal{M}$.

Post-groups (C. Bai, L. Guo, Y. Sheng, R. Tang, 2023)

A **post-group** is a group (G, .) endowed with $\triangleright : G \times G \rightarrow G$ such that

• L_A^{\triangleright} : $a \triangleright -$ is a group automorphism for any $a \in G$,

•
$$a \triangleright (b \triangleright c) = (a * b) \triangleright c$$
, with

$$a * b := a.(a \triangleright b).$$

イロト 不得 トイヨト イヨト

Post-groups (C. Bai, L. Guo, Y. Sheng, R. Tang, 2023)

A **post-group** is a group (G, .) endowed with $\triangleright : G \times G \rightarrow G$ such that

- L_A^{\triangleright} : $a \triangleright -$ is a group automorphism for any $a \in G$,
- $a \triangleright (b \triangleright c) = (a * b) \triangleright c$, with

$$a * b := a.(a \triangleright b).$$

It turns out that

- (*G*,*) is the **Grossman-Larson group**, sharing the same unit with (*G*,.),
- (G, *) acts on (G, .) by automorphisms.

• □ ▶ • @ ▶ • E ▶ • E ▶

-

- The opposite post-group is given by (G, ⊙, ►) with a ⊙ b := b.a and a ► b := a.(a ▷ b).a⁻¹.
- Both share the same Grossman-Larson group:
 a * b = a.(a ▷ b) = a ⊙ (a ► b).

• The Lie algebra of a **post-Lie group** is a post-Lie algebra [BGST2023]:

$$X \triangleright Y = \frac{d}{dt} |_{t=0} \frac{d}{ds} |_{s=0} \exp(tX) \triangleright \exp(sY).$$

 The post-Lie algebra of the opposite post-Lie group is the opposite post-Lie algebra.

(日) (同) (日) (日) (日)

• The Lie algebra of a **post-Lie group** is a post-Lie algebra [BGST2023]:

$$X \triangleright Y = \frac{d}{dt} |_{t=0} \frac{d}{ds} |_{s=0} \exp(tX) \triangleright \exp(sY).$$

- The post-Lie algebra of the opposite post-Lie group is the opposite post-Lie algebra.
- Theorem (BGST2023): The notion of post-group is equivalent to
 - Guarnieri-Vendramin's skew-braces (2017),
 - Lu-Yan-Zhu's braided groups (2000).

(日) (同) (日) (日) (日)

Braided groups (J.-H. Lu, M. Yan, Y.-C. Zhu, 2000)

A braided group is a triple (G, m, σ) where (G, m) is a group and

 $\sigma: G \times G \xrightarrow{\sim} G \times G$

such that

•
$$\sigma \circ (m \times m) = (m \times m) \circ \widetilde{\sigma}$$
, with

$$\widetilde{\sigma} := \sigma_{23} \circ (\sigma \times \sigma) \circ \sigma_{23} : G^4 \stackrel{\sim}{\longrightarrow} G^4,$$

• $m \circ \sigma = m$.

イロト イポト イヨト イヨト

• σ verifies the braid equation

 $\sigma_{12} \circ \sigma_{23} \circ \sigma_{12} = \sigma_{23} \circ \sigma_{12} \circ \sigma_{23},$

イロト イポト イヨト イヨト

• σ verifies the braid equation

$$\sigma_{12} \circ \sigma_{23} \circ \sigma_{12} = \sigma_{23} \circ \sigma_{12} \circ \sigma_{23},$$

• As a consequence, $R := flip \circ \sigma$ verifies the set-theoretical Yang-Baxter equation

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{13} \circ R_{12}.$$

• σ verifies the braid equation

$$\sigma_{12} \circ \sigma_{23} \circ \sigma_{12} = \sigma_{23} \circ \sigma_{12} \circ \sigma_{23},$$

• As a consequence, $R := flip \circ \sigma$ verifies the set-theoretical Yang-Baxter equation

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{13} \circ R_{12}.$$

Introducing the notation σ(x, y) = (x → y, x ← y), both maps → and ← are respectively a left and a right action of G on itself.
 [LYZ2000].

Theorem [BGST2023]

For any post-group (G,.,▷), the Grossman-Larson group (G,*) is a braided group, with σ given by

$$\sigma(g,h) = \Big(g \rhd h, (g \rhd h)^{*-1} * g * h\Big).$$

Theorem [BGST2023]

For any post-group (G,.,▷), the Grossman-Larson group (G,*) is a braided group, with σ given by

$$\sigma(g,h) = \Big(g \triangleright h, (g \triangleright h)^{*-1} * g * h\Big).$$

• Conversely, any braided group $(G, *, \sigma)$ with

$$\sigma(g,h) = (g \rightharpoonup h, g \leftarrow h)$$

gives rise to a post-group $(G, ., \triangleright)$ whose GL product is *. Explicitly,

$$g \triangleright h := g \rightharpoonup h, \qquad g.h := g * (g^{*-1} \rightharpoonup h).$$

(日) (同) (日) (日) (日)

Opposite post-group revisited

Proposition [AEM2023]: The braiding corresponding to the opposite post-group (G, \odot, \triangleright) is σ^{-1} .

イロト イポト イヨト イヨト

Opposite post-group revisited

Proposition [AEM2023]: The braiding corresponding to the opposite post-group (G, \odot, \triangleright) is σ^{-1} .

As a consequence, **pre-groups** are the same as **symmetric braided groups**.

イロト イポト イヨト イヨト

Left-regular diagonal magmas and the $\ensuremath{\mathcal{K}}$ map

Definition [AEM2023]: A **left-regular diagonal magma** is a magma (M, \triangleright) such that

- The maps $L_a^{\triangleright} = a \triangleright -$ are bijective for any $a \in M$,
- The map $\Lambda : M \to M$ given by $\Lambda(a) := (L_a^{\triangleright})^{-1}(a)$ is bijective.

イロト イポト イヨト イヨト

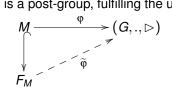
Left-regular diagonal magmas and the $\ensuremath{\mathcal{K}}$ map

Definition [AEM2023]: A **left-regular diagonal magma** is a magma (M, \triangleright) such that

- The maps $L_a^{\triangleright} = a \triangleright -$ are bijective for any $a \in M$,
- The map $\Lambda : M \to M$ given by $\Lambda(a) := (L_a^{\triangleright})^{-1}(a)$ is bijective.

Proposition [AEM2023]: For any left-regular diagonal magma M,

• the free group F_M is a post-group, fulfilling the universal property below $M \xrightarrow{\phi} (G \land h)$



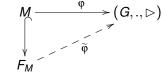
Left-regular diagonal magmas and the $\ensuremath{\mathcal{K}}$ map

Definition [AEM2023]: A **left-regular diagonal magma** is a magma (M, \triangleright) such that

- The maps $L_a^{\triangleright} = a \triangleright -$ are bijective for any $a \in M$,
- The map $\Lambda : M \to M$ given by $\Lambda(a) := (L_a^{\triangleright})^{-1}(a)$ is bijective.

Proposition [AEM2023]: For any left-regular diagonal magma M,

• the free group F_M is a post-group, fulfilling the universal property below $M \xrightarrow{\phi} (G, .., \triangleright)$



there is a unique explicit group isomorphism 𝔅 : (𝐾_M,.) → (𝐾_M,*) extending Id_M. Its inverse 𝔆 is a post-group analogue of Gavrilov's K-map.

References

[AEMM2022] M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, H. Z.

Munthe-Kaas, Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials, preprint, arXiv:2205.04381 (2022)

[AEM2023] M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, Free

post-groups, post-groups from group actions, and post-Lie algebras, preprint, arXiv2306.08284 (2023).

[BGST2023] C. Bai, L. Guo, Y. Sheng, R. Tang, *post-groups, (Lie-)Butcher* groups and the Yang-Baxter equation, math. Annalen,

https://doi.org/10.1007/s00208-023-02592-z (2023).

[GV2017] L. Guarnieri, L. Vendramin, *Skew braces and the Yang-Baxter equation*, Math. Comp. **86**, 2519-2534 (2017).

[LST2022] Y. Li, Y. Sheng, R. Tang, *Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation*, preprint, arXiv:2203:12174 (2022).

[LYZ2000] J.-H. Lu, M. Yan, Y.-C. Zhu, On the set-theoretical Yang-Baxter

equation, Duke Math. J. 104 No1, 1-18 (2000).

< ロ > < 同 > < 回 > < 回 > < 回 >

Thank you very much!

イロト イロト イヨト イヨト

Э.