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Motivation

• Universal coalgebra as a uniform framework for state-based
transition systems: from behavioural equivalence to
behavioural distance [14, 20]

• Quantitative domain theory: algebraic structure with
prominent features of convergence and approximation
[1, 3, 6, 15]

• Many-valued formal concept analysis: extracting information
from contexts with quantitative data [19]
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It is often the case that the closed structure is primary and
the tensor product is defined as a left adjoint to it [...], but its
construction is much less intuitive [...] (and) gives little
information about what it actually looks like. (nLab)

• Cocomplete quantale-enriched categories

• Completely distributive cocomplete quantale-enriched
categories

https://ncatlab.org/nlab/show/closed+category


Quantales

A commutative quantale V is a commutative monoid in SupLat:
(V ,∨,⊥) is a complete sup-lattice

(V ,⊗, e) is a commutative monoid such that
–⊗ – preserves arbitrary sups

Consequence: every –⊗ v : V → V has a right adjoint [v, –] : V → V
u⊗ v ≤ w ⇐⇒ u ≤ [v, w] modus ponens

Examples

• (2,∧, 1)

• ([0,∞]op, +, 0)

• ([0, 1],⊗, 1), with ⊗ the usual product/min/Łukasiewicz product

• The quantale of left continuous distribution functions
∆ = {f : [0,∞] → [0, 1] | f(a) =

∨
b<a f(b)}



Quantale-enriched categories

Let V be a commutative quantale. A V-enriched category A
consists of a set of objects, together with a V-valued relation
(usually called V-hom, or V-distance, or V-metric)

A(–, –) : A ×A → V

satisfying

e ≤ A(a, a) and A(a, b)⊗A(b, c) ≤ A(a, c)

Examples

• V = (2,∧, 1) =⇒ V-enriched categories are ordered sets

• V = ([0,∞]op, +, 0) =⇒ V-enriched categories are (generalised) metric spaces

• V = ∆ =⇒ V-enriched categories are probabilistic metric spaces [13]



Quantale-enriched categories

Denote by V-cat the (2-)category of V-categories and V-functors.

V-cat is symmetric monoidal closed:

• The tensor product A ⊗ B of two V-categories A and B has pairs
(a, b) with a ∈ A, b ∈ B as objects, and V-homs

(A ⊗ B)((a′, b′), (a, b)) = A(a′, a)⊗ B(b′, b)

• The unit for the tensor product is the V-category 1, with one object
0 and corresponding V-hom given by 1(0, 0) = e.

• The internal hom between two V-categories A and B is the
V-category of V-functors A → B with “uniform” V-distances

[A,B](f, g) =
∧
a
B(fa, ga)



Free cocompletion monad

• Denote DA = [Aop,V]. The correspondence A 7→ DA produces
a monad

D : V-cat → V-cat
with unit the Yoneda embedding

yA : A → DA , y(a) = A(–, a)

and multiplication the V-”union” of downsets.

• D is the free cocompletion monad on V-cat; in particular, it is a
Kock-Zöberlein-monad.

• A D-algebra is a cocomplete V-category A, with structure
provided by the left adjoint supA of yA

A
yA

//⊥ DA
supAoo



Multiple facets of cocomplete V-categories [16, 18]

• Algebras for the free cocompletion monad D on V-cat

• Injective V-enriched categories (wrt fully faithful V-functors)

• Modules over the monoid V within the category of sup-lattices

• Algebras for the V-valued powerset monad on Set (separated
V-Sup)



Tensor product of cocomplete V-categories

• Denote by V-Sup the category of cocomplete V-categories and
cocontinuous V-functors (category of D-algebras).

• D is a commutative monad, therefore V-Sup is symmetric
monoidal closed:

• The tensor product ⊗V-Sup classifies bimorphisms [12]

A × B universal
bimorphism

//

bimorphism

&&

A ⊗V-Sup B

m
orphism

��

C

• The unit is D1 = V

• The internal hom is V-Sup(A,B).



Tensor product of cocomplete V-categories

• The inverter
A ⊗V-Sup B � � // D(A ⊗ B) //

⇓ // D(DA ⊗DB)

exhibits A ⊗V-Sup B as reflective in D(A ⊗ B) [2]

• There is a duality V-Sup ∼= V-Supop, sending A to Aop and
f : A → B to gop : Bop → Aop, where f a g

• In particular, Aop ∼= V-Sup(V ,Aop) ∼= V-Sup(A,Vop)

• This implies that V-Sup is a ∗-autonomous category, with
dualizer Vop [5]

V-“Sup is good food” (R. Blute, FMCS 2022)



Tensor product of cocomplete V-categories

• Consequently, the tensor product can be equivalently described
using Galois connections [2, 5]

A ⊗V-Sup B ∼= V-Sup(A,Bop)op

• What about other (monoidal) features of V-Sup?



Nuclearity

• Grothendieck introduced in Functional Analysis the concept of
nuclearity for objects and morphisms, in order to mimic finite
dimensionality behaviour (for objects) and matrix calculus (for
arrows) [8]

• It was later realised that nuclearity can be defined in the more
general context of (symmetric) monoidal closed categories:

• An arrow f : A → B is nuclear iff the associated 1→ [A,B]
factorises through A∗ ⊗ B, where A∗ = [A,1]:

1 //

&&

A∗ ⊗ B

��

[A,B]

• An object A is nuclear (dualizable) iff idA is so. [9]



Nuclearity – examples

• For any k-associative algebra A, the category ModA of right
A-modules is nuclear in the (2-)category LocPresk of locally
presentable k-linear categories and cocontinuous k-linear
functors, wrt the Kelly-Deligne tensor product ⊠ (follows from
the Eilenberg-Watts thm)

• Let C be a k-coassociative coalgebra. Then the category
ComodC of right C-comodules is nuclear in LocPresk if and only
if it has enough projectives [4]

• Nuclear objects in SupLat are the completely distributive
lattices [9]

• What about in V-Sup?



Completely distributive V-categories

V-catop ⊥
[–,V]

//

''

V-cat
[–,V]

oo

[[–,V],V]
��

V-CCD

OO

��
⊣

• The algebras for the double dualization monad [–,V],V] on V-cat:
completely distributive V-categories (V-CCD) [10, 18]
Homomorphisms: continuous and cocontinuous V-functors.

• Equivalently, a V-category A is V-CCD iff the Yoneda embedding yA
has a left adjoint supA (A is cocomplete) which has also a left
adjoint ⇓A [17]

A oo ⊥
⊥

//

//
DA

• Yet another description: V-CCD are the projective objects of V-Sup
[17]



Tensor product of V-CCD in V-Sup [2]

• For A,B ∈ V-CCD, A ⊗V-Sup B is again V-CCD

• Using the split idempotent completion of the category of
V-categories and V-distributors, it follows that every V-CCD
is nuclear in V-Sup

• Conversely, each nuclear object in V-Sup is projective, hence
V-CCD

• What about the symmetric monoidal closed category V-CCD
(with continuous and cocontinuous V-functors as arrows)?



Addendum: the Isbell completion

• For each V-category A, there is an adjunction commuting with
the Yoneda embeddings

A
yA
zz

y′A
$$

[Aop,V]
//

⊥ [A,V]opoo

• The fixed points of this adjunction determine a complete and
cocomplete V-category IA into which A embeds, known as the
Isbell completion of a V-category (the categorical analogue of
the Dedekind-MacNeille completion of a poset) [11]

• V-Sup is reflective in the category of V-categories and
cut-cocontinuous V-functors, with reflection given by the
Isbell completion [7]



Addendum: the Isbell completion

• When is the Isbell completion of a V-category V-CCD? It
seems unlikely that a good explicit description could be
achieved in general (for V = 2 it involves taking complements of
relations)

• However, V is a Girard quantale, then the Isbell completion of
a V-category A is V-CCD iff the “negation” of the V-hom
distributor A(–, –) is a regular V-relation [2]



Conclusions

M. Fréchet
Sur quelques points du calcul fonctionnel (1906)

I1 fallait d‛abord voir comment transformer les énoncés des théorèmes pour qu‛ils
conservent un sens dans le cas général. I1 fallait ensuite, soit transcrire les dé-
monstrations dans un langage plus général, soit, lorsque cela n‛était pas possi-
ble, donner des démonstrations nouvelles et plus générales. Il s‛est trouvé que
les démonstrations que nous avons ainsi obtenues sont souvent aussi simples, et
quelquefois même plus simples, que les démonstrations particulières qu‛elles rem-
pla caient. Cela tient sans doute à ce que la position de la question obligeait à ne
faire usage que de ses particularités vraiment essentielles.



Thank you for your attention!
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